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Abstract

BAS accelerates approximate analytical join queries over unstructured data and provides statistical guarantees via confidence
intervals. Given an expensive Oracle method that can process the analytical join query with high accuracy, BAS integrates blocking
and sampling algorithms to reduce the Oracle cost. Given an Oracle budget b = b1 + b2, BAS automatically allocate data tuples to
sampling or blocking and minimizes the mean squared error of the estimation. In this document, we theoretically analyze that BAS
converges to the optimal allocation at the rate of O(1/

√
b1) and asymptotically outperforms or matches the standalone sampling

algorithm. Furthermore, we show that BAS be extended to accelerate approximate selection join queries.

Index Terms

theoretical analysis, join, analytics, unstructured data, approximate query processing

Symbol Description

D stratified dataset of data tuples in the cross product of join tables
W normalized similarity scores of tuples in D
O Oracle
g attribute where the aggregate is computed
b, b1, b2 Oracle budget of the overall procedure, pilot sampling, and sampling+blocking execution
p confidence
α maximum blocking ratio
K number of strata

ĈOUNT, ŜUM, ÂVG, ÂGG
estimated aggregate for the entire dataset, sampling regime (with a subscript s),
and blocking regime (with a subscript b)

l, u lower, upper bound of the confidence interval
O(·) Bachmann-Landau big-O notation
β, β∗, β̂∗ the allocated strata to blocking that is given, optimal, and estimated
n
(1)
i , ni assigned Oracle budget for stratum i during pilot sampling and blocking+sampling execution

σ2
i , σ̂

2
i (estimated) sampling variance of stratum i

µ, µ̂ (estimated) expectation of stratum i

S
(1)
i , Si sampled data tuples from stratum i during pilot sampling and blocking+sampling

tj t-statistic of the j-th resampling iteration
D̃, D̃(s) the set of matching tuples of the entire dataset or the sampling regime

TABLE I: Summary of Notation

I. SETUP

In this section, we describe BAS in detail as a setup for the theoretical analysis. We will go over the entire procedure of
BAS, including stratification, pilot sampling, blocking, sampling, and resampling.

Inputs and Outputs. BAS takes as inputs the cross product of tables D, the similarity scores W , the Oracle O, the overall
Oracle budget b divided for pilot sampling (b1) and bloking+sampling execution (b2), the confidence p, the maximum blocking
ratio α, and the number of strata K. BAS outputs an estimated aggregate µ̂ and its confidence interval [l, u].

Stratification. We divide D into a maximum blocking regime and a minimum sampling regime (D0). The maximum blocking
regime contains tuples with the top α · b similarity scores, where α is a parameter between 0 and 1 to control the size of the



maximum blocking regime. Next, we stratify the maximum blocking regime into K strata (D1, . . . , DK ) with equal sizes. The
number of strata K is automatically determined to ensure that each stratum has an Oracle budget of at least 1,000.

Pilot Sampling. For each stratum, we execute WWJ to obtain a pilot sample S
(1)
i . The Oracle budget for the stratum i in the

pilot sampling is calculated as

n
(1)
i = b1 ·

∑
s∈Di

W (s)∑
s∈D W (s)

(1)

We can estimate the sampling variance as

σ̂2
i =

1

n(1) − 1

∑
s∈S

(1)
i

 g(s)O(s)

W (s)|Di|
−

 1

n
(1)
i

∑
s′∈S

(1)
i

g(s′)O(s′)

W (s′)|Di|




2

W (s)

Given an allocation β, we can then estimate the MSE of BAS for a SUM aggregate as follows

M̂SESUM(D,β,W, b2) =
∑

0≤i≤k,i/∈β

|Di|2

ni
· σ̂2

i

where ni is the assigned Oracle budget for stratum i in the stage of blocking+sampling execution, calculated as

ni =

(b2 −
∑

j∈β |Di|) ·
∑

s∈Di
W (s)∑

1≤j≤K,j/∈β

∑
s∈Dj

W (s) i /∈ β

|Di| i ∈ β

Next, we obtain the estimated optimal allocation by solving the following optimization problem using iterative methods.

β̂∗ = argmin
β⊂{1,...,K}

M̂SESUM(D,β,W, b2)

Blocking+Sampling. Given the optimal allocation β̂∗, we use the Oracle budget b1 to execute the Oracle on the strata that are
allocated to the blocking regime. On the remaining strata, we execute WWJ to obtain a sample using the remaining Oracle
budget. We can obtain the sample Si on the stratum i that is allocated to sampling. Then, we merge the result of all strata and
the results of pilot sampling to estimate the aggregate. Specifically, we estimate the aggregate as follows:

ĈOUNTs =
1∑

i/∈β̂∗ ni

∑
i/∈β̂∗

∑
s∈Si

O(s)

W (s)|Di|
, COUNTb =

∑
i∈β̂∗

∑
s∈Di

O(s)

ĈOUNTs =
1∑

i/∈β̂∗ ni

∑
i/∈β̂∗

∑
s∈Si

g(s)O(s)

W (s)|Di|
, COUNTb =

∑
i∈β̂∗

∑
s∈Di

g(s)O(s)

ĈOUNT = ĈOUNTs + COUNTb, ŜUM = ŜUMs + SUMb

ÂVG =
(
ŜUMs + SUMb

)/(
ĈOUNTs + COUNTb

)
Resampling. We apply the bootstrap-t resampling scheme to calculate the CI [1]. The bootstrap-t scheme estimates the standard
error µ̂−µ

σ (i.e., t-statistic) of the underlying distribution by resampling existing samples. To process aggregation queries, we
first calculate the mean and standard deviation of the estimator. Next, we use sampling with replacement to resample from all
existing samples (S(1) ∪ S). We calculate the t-statistic of the j-th iteration as follows.

tj =
ÂGGj − ÂGG

σ̂j

where ÂGGj and σ̂j are the estimated aggreagte and standard deviation on the j-th resample. To achieve statistical guarantees,
we repeat the resampling a sufficient number of times (e.g., 1000). Finally, we use the percentiles of resampled t-statistics to
construct the CI, that is

l = ÂGG− Percentile

(
t,
1− p

2

)
, u = ÂGG− Percentile

(
t, 1− 1− p

2

)



II. BAS CONVERGES TO THE OPTIMAL ALLOCATION

Theorem 1. The MSE with the estimated minimizer β̂∗ converges to that with the true minimizer β∗ with the rate O
(
1/

√
b1
)
:

MSE(D, β̂∗,W, b2)−MSE(D,β∗,W, b2)

MSE(D,β∗,W, b2)
= O

(
1√
b1

)
Proof: We first show the estimated MSE converges to the true MSE. To achieve that, we establish the convergence rate of

the sample mean µ̂i and variance σ̂2
i for stratum i because MSE estimations are calculated with summations, multiplications,

and divisions of basic estimators µ̂i, σ̂
2
i .

We construct the concentration inequality for the sample mean µ̂i and sample variance σ̂2
i of each stratum Di, i = 0, . . . ,K.

Given the i.i.d. sample, we can bound the relative errors of µ̂i and σ̂2
i with Chebeyshev’s Inequality, where the variance of an

i.i.d. sample variance is calculated as V ar
[
σ̂2
i

]
=

2σ4
i

ni−1 [2].

P

∣∣∣∣µi − µ̂i

µi

∣∣∣∣ ≤ σi

µi

√
δn

(1)
i

 ≥ 1− δ

2
(2)

P

[∣∣∣∣σ2
i − σ̂2

i

σ2
i

∣∣∣∣ ≤
√

2

δ(n
(1)
i − 1)

]
≥ 1− δ

2
(3)

where δ is a small probability.
Since n

(1)
i is linearly related to the Oracle budget b1 (Eq. 1), we have the following big-O notations showing the convergence

rate that holds with high probability.

µi − µ̂i

µi
= O

(
b
−1/2
1

)
,

σ2
i − σ̂2

i

σ2
i

= O
(
b
−1/2
1

)
(4)

Next, we show the convergence rate of relative error is preserved after summations, multiplications, and divisions. Namely,
for unbiased estimators µ1 and µ2 with relative error converging to 0 with a rate of O

(
b−1
1

)
(t > 0), we have Equations 5 - 7.

(µ1 + µ2)− (µ̂1 + µ̂2) = µ1 · O
(
b−1
1

)
+ µ2 · O

(
b−1
1

)
= (µ1 + µ2) · O

(
b−1
1

)
(5)

µ1µ2 − µ̂1µ̂2 = µ1µ2 − µ1

(
1 +O

(
b−1
1

))
µ2

(
1 +O

(
b−1
1

))
= µ1µ2

(
O
(
b−1
1

)
+O

(
b−2t
1

))
= µ1µ2O

(
b−1
1

)
(6)

µ−1 − µ̂−1 = µ−1µ̂−1(µ̂− µ)

= µ−2
(
1 +O

(
b−1
1

))−1
µO

(
b−1
1

)
= µ−1O

(
b−1
1

)
(7)

Therefore, given the convergence rate of basic estimators (Eq. 4) and propagation rules (Eq. 5-7), the relative error of our
optimization objective converges to 0 with the same rate O

(
b
−1/2
1

)
, with high probability. Namely, the following probabilistic

bound holds for any β ⊂ {1, . . . ,K} with a high probability of 1− δ/2

P

[∣∣∣∣∣MSEAGG(D,β,W, b2)− M̂SEAGG(D,β,W, b2)

MSEAGG(D,β,W, b2)

∣∣∣∣∣ ≤ C√
b1

]
≥ 1− δ

2
(8)

where C is a constant independent of n. Based on Equation 8, we can derive the following bound for MSE that holds with a
high probability of 1− δ/2.

1

1 + C√
n

M̂SEAGG(β) ≤ MSEAGG(β) ≤
1

1− C√
n

M̂SEAGG(β)

where we omit the parameters D,W, b2 for simplicity.



We then derive the upper bound of the difference between the MSE of BAS and the optimal MSE. Given the estimated
minimizer β̂∗ and the true minimizer β∗, we can establish the following upper bound of the difference between MSEAGG(β̂

∗)
and MSEAGG(β

∗).

MSEAGG(β̂
∗)−MSEAGG(β

∗) ≤ 1

1− C1√
n

M̂SEAGG(β̂
∗)−MSEAGG(β

∗) (9)

≤ 1

1− C1√
n

M̂SEAGG(β
∗)−MSEAGG(β

∗) (10)

≤ 1

1− C1√
n

(
1 +

C2√
n

)
MSEAGG(β

∗)−MSEAGG(β
∗) (11)

=
C1 + C2√
n− C1

MSEAGG(β
∗) (12)

where inequalities 9 and 11 apply the probabilistic inequalities of MSEAGG(β̂
∗) and MSEAGG(β

∗) respectively, inequality 10 is
due to the definition of estimated minimizer β̂∗, and C1, C2 are constants from the probabilistic inequalities.

Finally, we derive the upper bound of the relative error of the optimization objective that holds with high probability.

MSEAGG(β̂
∗)−MSEAGG(β

∗)

MSEAGG(β∗)
≤ C1 + C2√

n− C1

This upper bound shows that the relative error between the MSE with estimated minimizer β̂∗ and the MSE with actual
minimizer β∗ converges to 0 at the rate O

(
b
−1/2
1

)
with high probability.

III. BAS OUTPERFORMS OR MATCHES WWJ

Theorem 2. If there exists an allocation β such that the following two conditions hold

Es∈D̃(s)

[
1/|D̃(s)|
W (s)

]
≤ Es∈D

[
1/|D|
W (s)

]
(13)

|D̃(s)|2

b
(s)
2

≤ |D|2

b
(14)

BAS outperforms WWJ asymptotically, i.e.,

MSESUM = C ·MSE
(w)
SUM +O

(
b−1
1 b

−1/2
2

)
where C is a coefficient less than 1:

C <
|D̃(s)|2

/
b
(s)
2

|D̃|2/b

Es∈D̃(s)

[
1/|D̃(s)|
W (s)

]
Es∈D̃

[
1/|D̃|
W (s)

] ≤ 1

Otherwise, BAS matches WWJ asymptotically, i.e.,

MSESUM ≤ MSE
(w)
SUM +O

(
b−1
1 b

−1/2
2

)
Proof: We first derive the ratio between the MSE of BAS and importance sampling, given a deterministic allocation β.

The MSe of BAS for a SUM aggregate can be calculated as follows.

MSESUM =
∑
i/∈β

1

ni

(
Es∼W,s∈Di

[(
g(s)O(s)

W (s)

)2
]
−
(
Es∼W,s∈Di

[
g(s)O(s)

W (s)

])2
)

=
1

b
(s)
2

∑
i/∈β

(
|Di|E

[
g(s)2O(s)

riW (s)

]
− 1

ri
(|Di|E [g(s)O(s)])

2

)
where

b
(s)
2 = b2 −

∑
i∈β

|Di|, ri =

∑
s∈Di

W (s)∑
j /∈β

∑
s∈Dj

W (s)



Assuming the independence of the SUM column g(·) and the oracle results O(·), we can further simplify the expression of
MSE as follows.

MSESUM =
1

b
(s)
2

E
[
g(s)2

]∑
i/∈β

(
|Di|E

[
O(s)

riW (s)

])
− E[g(s)]2

ri

∑
i/∈β

(|Di|E [O(s)])
2

 (15)

We notice that ri unweights the proxy scores over a stratum into the proxy scores over the whole sampling regions. In this
case, we merge riW (s) as W (s). Furthermore, we can simplify the sum of the expectations of strata into the expectation of
the whole sampling region.

MSESUM =
1

b
(s)
2

|D| · E
[
g(s)2

]
· E
[
O(s)

W (s)

]
− E[g(s)]2

ri

∑
i/∈β

(|Di|E [O(s)])
2


Next, we rewrite the expectations over all tuples with expectations over matching tuples by evaluating the oracle results O(·).

MSESUM =
1

b
(s)
2

E
[
g(s)2

]
·
∣∣∣D̃(s)

∣∣∣ · Es∈D̃(s)

[
1

W (t)

]
− E[g(s)]2

∑
i/∈β

|D̃i|2

ri


=

∣∣∣D̃(s)
∣∣∣

b
(s)
2

E
[
g(s)2

]
Es∈D̃(s)

[
1

W (t)

]
− E[g(s)]2

∑
i/∈β

qi

∣∣∣D̃(s)
i

∣∣∣


where

qi =

∣∣∣D̃(s)
i

∣∣∣∑
j /∈β

∣∣∣D̃(s)
j

∣∣∣
/

ri

We rewrite the MSE of WWJ for a SUM aggregate.

MSE
(w)
SUM =

1

b

(
Es∼W

[(
g(s)O(s)

W (s)

)2
]
−
(
Es∼W

[
g(s)O(s)

W (s)

])2
)

=
1

b

(
|D| · E

[
g(s)2O(s)

W (s)

]
− (|D| · E [g(s)O(s)])

2

)
=

1

b

(
E
[
g(s)2

]
· |D| · E

[
O(s)

W (s)

]
− |D̃|2 · E[g(s)]2

)
=

|D̃|
b

(
E
[
g(s)2

]
Es∈D̃

[
1

W (t)

]
− E[g(s)]2|D̃|

)
We take the ratio between the MSE of BAS and that of WWJ. We assume the variance of SUM-column in the sampling

region is the same as that for all tuples.

MSESUM

MSE
(w)
SUM

=
|D̃(s)|

/
b
(s)
2

|D̃|/b

E
[
g(s)2

]
Es∈D̃(s)

[
1

W (s)

]
− E[g(s)]2

∑
i/∈β qi

∣∣∣D̃(s)
i

∣∣∣
E [g(s)2]Es∈D̃

[
1

W (s)

]
− E[g(s)]2|D̃|

=
|D̃(s)|

/
b
(s)
2

|D̃|/b

Es∈D̃(s)

[
1

W (s)

]
− E[g(s)]2

E[g(s)2]
∑

i/∈β qi

∣∣∣D̃(s)
i

∣∣∣
Es∈D̃

[
1

P (s)

]
− E[g(s)]2

E[g(s)2] |D̃|

=
|D̃(s)|

/
b
(s)
2

|D̃|/b

Es∈D̃(s)

[
1

W (t)

]
− 1

1+CVg

∑
i/∈β qi

∣∣∣D̃(s)
i

∣∣∣
Es∈D̃

[
1

W (s)

]
− 1

1+CVg
|D̃|

where CVg is the coefficient of variation of the SUM-column g(·),

CVg =
V ar[g(s)]

E[g(s)]2



We apply Holder’s Inequality to obtain an upper bound to the effect of stratification on the MSE as follows.

∑
i/∈β

qi

∣∣∣D̃(s)
i

∣∣∣ = 1

|D̃(s)|

∑
i/∈β

∣∣∣D̃(s)
i

∣∣∣2
ri

=
1

|D̃(s)|

∑
i/∈β

∣∣∣D̃(s)
i

∣∣∣2
ri


∑

i/∈β

ri

 ≥ 1

|D̃(s)|

∑
i/∈β

∣∣∣D̃(s)
i

∣∣∣
√
ri

√
ri

2

=
∣∣∣D̃(s)

∣∣∣
Therefore, the ratio has the following upper bound.

MSESUM

MSE
(w)
SUM

≤
|D̃(s)|

/
b
(s)
2

|D̃|/b

Es∈D̃(s)

[
1

W (s)

]
− 1

1+CVg
|D̃(s)|

Es∈D̃

[
1

W (s)

]
− 1

1+CVg
|D̃|

=
|D̃(s)|2

/
b
(s)
2

|D̃|2/b

Es∈D̃(s)

[
1/|D̃(s)|
W (s)

]
− 1

1+CVg

Es∈D̃

[
1/|D̃|
W (s)

]
− 1

1+CVg

If the following condition holds

Es∈D̃(s)

[
1/|D̃(s)|
W (s)

]
≤ Es∈D̃

[
1/|D̃|
W (s)

]
, (16)

we have the following upper bound for the ratio

MSESUM

MSE
(IS)
SUM

<
|D̃(s)|2

/
b
(s)
2

|D̃|2/b

Es∈D̃(s)

[
1/|D̃(s)|
W (s)

]
Es∈D̃

[
1/|D̃|
W (s)

]
Furthermore, if the matching tuples are sparse in the sampling region, i.e.,

|D̃(s)|2
/
b
(s)
2 < |D̃|2/b (17)

Then,
MSESUM = C ·MSE

(IS)
SUM

where C is a coefficient less than 1,

C <
Es∈D̃(s)

[
1/|D̃(s)|
W (s)

]
Es∈D̃

[
1/|D̃|
W (s)

] ≤ 1

We then apply the Theorem 1 to replace the MSE of BAS with deterministic allocation with the MSE of BAS with pilot
sampling. Namely, we have the following approximation:

MSESUM(β̂
∗) = MSESUM(β

∗) ·
(
1 +O

(
b
−1/2
1

))
= C ·MSE

(w)
SUM

(
1 +O

(
b
−1/2
1

))
Since MSE

(w)
SUM converges to 0 at the rate O

(
b−1
)
. Therefore, we conclude that if the conditions 16 and 17 hold, JOINML

outperforms WWJ asymptotically. Namely,

MSESUM(β̂
∗) = C ·MSE

(IS)
SUM +O

(
b
−1/2
1 b−1

)
(18)

On the other hand, if the conditions 16 and 17 do not hold, we can set β = ∅, which will make the sampling region become
the entire data tuples. In this case, the upper bound of the ratio will be 1. Namely,

MSESUM ≤ MSE
(IS)
SUM

Taking Theorem 1 into account, we will have the following upper bound for MSE of BAS.

MSESUM ≤ MSESUM

(
1 +O

(
b
−1/2
1

))
≤ MSE

(w)
SUM

(
1 +O

(
b
−1/2
1

))
= MSE

(w)
SUM +O

(
b
−1/2
1 b−1

)
(19)

To conclude, we have shown that the MSE of BAS either outperforms (Eq. 18) or matches (Eq. 19) that of WWJ asymptotically.



IV. BAS FOR SELECTION JOIN QUERIES

Lemma 3. With a probability higher than p, we can achieve the overall recall target γ if γs satisfies

γs ≥ γ − (1− γ)
COUNTb

UB(COUNTs, V ar[COUNTs], b, p)

where

UB(µ, σ2, b, p) = µ+
σ√
b

√
2 log

2

1− p

Proof: We first show the upper bound of the number of matching tuples in the sampling region ĈOUNTs. Then, the required
recall target γs of the sampling region follows automatically.

Given an i.i.d. sample of size n drawn from a population with mean µ and finite and non-zero variance σ2, the upper bound
of the sample mean can be estimated with normal approximation [3], [4]. Namely,

P
[
µ̂ ≥ µ+

σ√
n

√
2 log

2

1− p

]
≤ 1− p

2

where p is the confidence.
We rewrite the recall target of the sampling region γ′

s with the overall recall target γ specified by the user.

γs =
γ
(
ĈOUNTs + ĈOUNTb

)
− ĈOUNTb

ĈOUNTs
= γ − (1− γ)

ĈOUNTb

ĈOUNTs

We observe that γs is monotonically increasing with respect to ĈOUNTs. Therefore, we use the upper bound of ĈOUNTs to
estimate the required γs such that the user-specified overall recall target can be guaranteed with high probability.
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