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Abstract

After decades of research in approximate query processing (AQP),
its adoption in the industry remains limited. Existing methods
struggle to simultaneously provide user-specified error guaran-
tees, eliminate maintenance overheads, and avoid modifications
to database management systems. To address these challenges, we
introduce two novel techniques, TAQA and BSAP. TAQA is a two-stage
online AQP algorithm that achieves all three properties for arbi-
trary queries. However, it can be slower than exact queries if we
use standard row-level sampling. BSAP resolves this by enabling
block-level sampling with statistical guarantees in TAQA. We imple-
ment TAQA and BSAP in a prototype middleware system, PilotDB,
that is compatible with all DBMSs supporting efficient block-level
sampling. We evaluate PilotDB on PostgreSQL, SQL Server, and
DuckDB over real-world benchmarks, demonstrating up to 126×
speedups when running with a 5% guaranteed error.
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1 Introduction

Approximate query processing (AQP) is widely studied to accelerate
queries in big data analytics [1, 2, 5, 8, 13, 14, 18, 28, 33, 34, 58, 66,
72, 75, 78, 80, 93, 105, 107]. Although AQP has been extensively
explored in academia, its adoption is still limited in practice [23, 63,
95]. Prior research demonstrates three properties that are crucial
for real-world AQP applications: (P1) guaranteeing user-specified
errors before the query is executed (i.e., a priori error guarantees) [5,
15, 28, 58, 66, 75, 105], (P2) no maintenance overheads [58, 67], and
(P3) not modifying the underlying database management system
(DBMS) [66, 67, 69, 80].

However, none of the existing systems or algorithms achieves all
three properties simultaneously (Table 1). We can further categorize
these techniques into two types: offline methods that pre-compute
samples and online methods that generate samples at query time.

Existing offline AQP methods requires maintenance overheads
[1, 2, 5, 8, 13, 14, 28, 34, 66, 80], sacrificing P2 and leading to limi-
tations in deployments. Offline methods operate in two stages. In
the offline stage, they pre-compute data samples based on expected
workloads. In the online stage, offline samples that satisfy the er-
ror specification are selected to answer the query. Consequently,
when data or workloads are updated, re-computations and/or man-
ual inspections are required to maintain a priori error guarantees
[5, 28, 66]. The cumulative costs of this maintenance can be a sig-
nificant overhead that discourages deployments and commercial
adoption [15, 71].

Although online methods eliminate maintenance overheads (P2)
[10, 37, 40, 54, 58, 94, 106], existing online AQP algorithms require
modifying DBMSs to achieve a priori error guarantees [58], sac-
rificing P3. These algorithms depend on sophisticated samplers
and complex optimization logic for query acceleration and error
guarantees [58]. However, these techniques are tightly integrated
with DBMSs and lack widespread support. Consequently, adopting
them requires modifying existing DBMSs, which can be infeasible
for commercial applications [69, 70, 80].

In this paper, we propose two novel techniques to simultaneously
achieve P1, P2, and P3, while accelerating queries compared to exe-
cuting exact queries. First, we introduce a two-stage online AQP
algorithm, TAQA, that achieves a priori error guarantees through
query rewriting and online sampling. Second, to accelerate query
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Table 1: Characteristics of state-of-the-art AQP systems and

algorithms. Online AQP inherently eliminates sample main-

tenance overhead. PilotDB is the first one that achieves a pri-

ori error guarantees (P1), eliminates maintenance overheads

(P2), and avoids DBMS modifications (P3), simultaneously.

AQP System A Priori Error
Guarantees (P1)

w/o Maintenance
Overhead (P2)

w/o Modifying
DBMSs (P3)

BlinkDB [5] ✓ × ×
Taster [75] ✓ × ×

Sample+Seek [28] ✓ × ×
Quickr [58] ✓ ✓ ×
BAQ [66] ✓ × ✓

VerdictDB [80] × × ✓
DBest [67] × ✓ ✓
PilotDB ✓ ✓ ✓

processing with TAQA, we develop BSAP, a set of statistical tech-
niques that formalize block sampling to provide statistical guaran-
tees in approximate queries. Finally, we build a middleware AQP
system, PilotDB, which implements TAQA and BSAP.

TAQA.Our online AQP algorithm, TAQA, achieves all three properties
through two stages of query rewriting and online sampling. In the
first stage, we rewrite the input query and execute it to determine
the optimal sampling plan that (1) satisfies the user’s error speci-
fication and (2) minimizes the execution cost. In the second stage,
we rewrite the input query with the optimal sampling plan and
execute it, delivering results directly to users. For both stages, the
rewritten queries leverage existing samplers in the DBMS.

However, naively applying samplers of existing work to TAQA
either fails to accelerate queries or requires modifying DBMSs.
Specifically, row-level samplers are inefficient in databases that
read data at the block level, resulting in query latencies as high as
exact queries (§4.1) [7, 91]. This is especially the case for analytical
queries where data scanning is often the primary latency bottle-
neck [17, 99]. To address the inefficiency of row-level samplers,
researchers have developed more efficient sampling techniques,
such as index-assisted sampling [100, 110]. Unfortunately, these
techniques require modifying DBMSs and are not widely supported,
sacrificing P3.

BSAP.We develop BSAP to accelerate online sampling using block-
level sampling (also known as block sampling)—an approach that
does not require modifying DBMSs (P3), as it is already widely
implemented [24, 26, 30, 43, 51, 88, 101]. Block sampling, which
samples data at the block level, achieves higher efficiency compared
to row-level sampling by skipping non-sampled blocks (Figure 1).1
Quantitatively, sampling 0.01% data from a table with 6B rows using
block sampling can be up to 500× faster than uniform row-level
sampling (Figure 4). Furthermore, our analysis reveals that for the
same error specification, the sample size required for uniform block
sampling can be comparable or even smaller than that of uniform
row-level sampling (§4.1).2

1Throughout the paper, “block” refers to the minimum unit of data accessing in the
storage layer.
2In an extreme case where the variance and expectation of a block is similar to the
entire dataset, sampling one block can be sufficient for a small error rate.

Uniform Sample Block Sample

Scanned block

Skipped block

Sampled row

Figure 1: Sampling 3% data from a table with a block size

of 100 rows: in expectation, the row-level method requires

scanning approximately 95% blocks, while the block-level

method scans approximately 3% blocks.

Although block sampling has been included in the ISO standard
SQL [62] and is widely supported, existing error analysis techniques
are insufficient to handle block sampling in nested or Join queries.
Naively applying existing techniques can lead to errors up to 52×
higher than the user-requested error (§5.2), sacrificing P1. We intro-
duce new statistical techniques in BSAP to formalize block sampling
in approximate queries with statistical error guarantees. For deep
nested queries, we establish sampling equivalence rules to reason
about the interaction between block sampling and relational opera-
tions. For Join queries, we analyze the asymptotic distribution and
the variance of the Join result over block samples, extending the
standard central limit theorem (CLT) that fails when block sampling
is executed on multiple tables [16, 48, 109].

With BSAP, we can further accelerate prior online AQP systems.
In particular, we can use block sampling to replace the heavily-
used uniform row-level sampling [58], while preserving their error
guarantees. We empirically show that BSAP can accelerate Quickr
by up to 60× (§5.4) and TAQA by up to 219× (§5.5), compared to
uniform row-level sampling.

We build a prototype middleware AQP system, PilotDB, that im-
plements TAQA and BSAP. We evaluate PilotDB on various DBMSs,
showing that it can achieve substantial query speedups on diverse
benchmarks, including TPC-H [25], Star Schema Benchmark [76],
ClickBench [22], Instacart [53, 80], and DSB [27]. When connected
to transactional databases, PostgreSQL [97] and SQL Server [68],
PilotDB achieves up to 126× speedup. When connected to an
analytical database, DuckDB [89], PilotDB achieves up to 13×
speedup. PilotDB consistently achieves a priori error guarantees
across various settings.

We summarize our contributions as follows:
(1) We propose TAQA, an online AQP algorithm that simultaneously

achieves P1, P2, and P3 (§3).
(2) We develop BSAP, a set of statistical techniques that enable block

sampling to answer approximate nested and Join queries with
statistical guarantees (§4).

(3) We build and evaluate PilotDB, which implements TAQA and
BSAP, achieving a priori error guarantees and up to two orders
of magnitude speedup on various DBMSs (§5).



PilotDB: Database-Agnostic Online ApproximateQuery Processing with A Priori Error Guarantees (Technical Report) SIGMOD ’25, June 03–05, 2025, Berlin, Germany

2 Overview

In this section, we present an overview of PilotDB. We first discuss
the background and challenges of building PilotDB (§2.1). Next,
we introduce the workflow of PilotDB (§2.2). Finally, we describe
the types of queries that PilotDB supports (§2.3) and the semantics
of errors that PilotDB guarantees (§2.4).

2.1 Background and Challenges

In Table 1, we summarize the characteristics of state-of-the-art AQP
systems in terms of a priori error guarantees (P1), maintenance
overheads (P2), and DBMS modifications (P3). We then present the
background and challenges of simultaneously achieving P1, P2, and
P3 from the perspective of algorithmic and statistical techniques.

Algorithmic Challenges.Given a query and an error specification
(§2.4), an AQP algorithm must plan sampling properly to achieve a
priori error guarantees (P1). A sampling plan specifies the sampling
method, table(s) to sample, and the sample size, which determines
whether the query can be accelerated and whether the error specifi-
cation can be satisfied. To determine the sampling plan, prior work
either pre-computes samples based on the knowledge of the query
workload [5, 28, 66, 75] or inserts samplers to the query plan at
query time based on runtime statistics [58]. However, thesemethods
break P2 or P3. The pre-computation method requires maintenance
efforts to refresh samples when data changes [5, 28, 66, 75], while
the method of inserting samplers at query time requires modifying
the execution and optimization logic of DBMSs [58].

We aim to resolve the tension among P1, P2, and P3. As we
explained, the key challenge is to determine the sampling plan
without pre-computation or controlling the query execution. To
address it, we propose a novel online AQP algorithm that processes
a query in two stages to plan and execute sampling (§3).

Statistical Challenges. Confidence intervals derived from statisti-
cal theories, such as CLT, are widely used to analyze errors of AQP
[3–5, 14, 28, 29, 37–40, 47, 54, 58, 66, 73–75, 80, 104]. However, deriv-
ing valid confidence intervals for AQP with block sampling brings
up two challenges that are not addressed in existing literature.

First, we need to analyze errors when there are intermediate
relational operations (e.g., Join and Group By) between block sam-
pling and aggregations. Prior work studies confidence intervals of
aggregations computed on the output of block sampling [39, 45, 79].
However, with multiple relational operations between aggregations
and block sampling, the confidence interval can potentially be af-
fected by interactions between the block sampling and relational
operations. Previous research on interactions between row-level
sampling and relational operations cannot be applied to block-
level sampling because they cannot handle the dependence of rows
from the same block [58, 73]. In this work, we propose sampling
equivalence rules that establish the commutativity between block
sampling and relational operations (§4.2), allowing us to analyze
errors of deep approximate queries that use block sampling.

Second, we need to obtain valid confidence intervals when mul-
tiple tables in a Join query are sampled at the block level. Existing
literature studies the asymptotic distribution of the Join result when
tables are sampled with the same sample size [39]. However, it is
insufficient in our case because we target a richer sampling space

User TAQA DBMS

Query
rewriter

SQL query ( )
error spec.

Query
execution

Pilot query ( )

BSAP

Pilot query
results ( )

Query
rewriter

Candidate sampling
plans ( )

Final query ( )

Approx. answer
Query

execution

Plan
optimizerOptimal sampling

plan ( )

Cost
model

Candidate query

Estimated cost

Figure 2: Workflow of PilotDB.

where sample sizes for tables can be arbitrarily different. To address
that, we extend the theoretical result of Hass et al. [39] to a general
form and derive an estimation of the upper bound of the sampling
variance to achieve error guarantees (§4.3).

Those challenges are crucial to formalizing block sampling in
AQP with error guarantees. We unify our theoretical results into
BSAP, which can also be used to further accelerate other online AQP
algorithms beyond PilotDB (§5.4).

2.2 Workflow

PilotDB operates as a middleware between the user and the DBMS.
Users may interact with PilotDB in the same way as they interact
with a DBMS except that PilotDB takes additionally the error
specification (§2.4) as input and produces an approximate answer.

On receiving the user’s input, PilotDB processes it with the TAQA
algorithm. TAQA first rewrites the input query𝑄𝑖𝑛 into a pilot query
𝑄𝑝𝑖𝑙𝑜𝑡 that computes necessary statistics for error analysis. Then,
TAQA issues 𝑄𝑝𝑖𝑙𝑜𝑡 to the DBMS and obtains the pilot result 𝑅𝑝𝑖𝑙𝑜𝑡 .
Based on 𝑅𝑝𝑖𝑙𝑜𝑡 and the error specification, TAQA incorporates BSAP
to decide whether 𝑄𝑖𝑛 can be approximated using block sampling.
Specifically, TAQA uses BSAP to analyze the error (§4) and generates
a set of candidate sampling plans, Θ̃, that guarantees the error
specification (§3.1). If TAQA cannot identify any feasible sampling
plans, PilotDBwill proceed to execute the original query𝑄𝑖𝑛 . Next,
TAQA interacts with the cost model of the DBMS to determine the
optimal sampling plan Θ that minimizes the estimated cost (§3.2).
Finally, TAQA rewrites𝑄𝑖𝑛 in the final query𝑄 𝑓 𝑖𝑛𝑎𝑙 based on Θ and
issues 𝑄 𝑓 𝑖𝑛𝑎𝑙 to the DBMS. We visualize this workflow in Figure 2.

2.3 Supported Queries

PilotDB is designed to answer all queries the underlying DBMS
supports by directly executing the original query on the DBMS
when necessary. There are two cases where PilotDB may fail to
accelerate a query: (1) TAQA does not support the query or (2) block
sampling cannot accelerate the query. In the first case, PilotDB
directly passes the query to the DBMS without intercepting it. In
the second case, PilotDB intercepts the query processing with
TAQA but executes the original query eventually.

PilotDB tries to intercept and accelerate arbitrary aggregation
queries using TAQA with the following exceptions. First, PilotDB
does not support non-linear aggregates, (e.g., COUNT DISTINCT,
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MAX, and MIN), or aggregates in Group By clauses (e.g., GROUP BY
COUNT(*)). These queries are challenging for AQP and not sup-
ported in prior techniques [5, 28, 58, 80].Moreover, if any subqueries
are correlated, PilotDB tries to replace correlated subqueries with
Joins using pre-defined rules. If PilotDB fails to apply rules, it falls
back to executing the exact query, since executing the pilot query
is expensive if the query is correlated [80].

PilotDB may fail to accelerate extremely selective queries or
queries with a large group cardinality. These two cases are chal-
lenging to support for sampling-based AQP [58, 80]. However, prior
online AQP may still use sampling on those queries, which results
in errors larger than the user-specified error [58]. By contrast, Pi-
lotDB incorporates sampling plan optimization (§3.2) to determine
that sampling is infeasible or not efficient for such queries. PilotDB
defaults to executing exact queries in this case.

2.4 Error Specifications and Semantics

Finally, we describe how users can specify error requirements in
PilotDB and define the statistical semantics of the error specifi-
cation. PilotDB allows users to specify a maximum relative error
of all aggregates and a probability or confidence, which are the
same specifications prior work allows [5, 58, 75, 105]. We present
an example query with error specifications below:

-- example query

SELECT l_returnflag , l_linestatus , SUM( l_extendedprice )
as agg_1 , AVG( l_extendedprice ) as agg_2

FROM lineitem

WHERE l_shipdate <= date '1998 -12 -01' - interval '90␣day'

GROUP BY l_returnflag , l_linestatus

-- error specification

ERROR WITHIN 5%

PROBABILITY 95%

Intuitively, the error specification in the example query means
that the probability of relative errors of agg_1 and agg_2 being
simultaneously less than 5% is at least 95%. Formally, consider a
query with 𝑘 aggregations and𝑚 groups, resulting in a set of 𝑘 ·𝑚
aggregates: {𝜇𝑖, 𝑗 |1 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑗 ≤ 𝑚}. We denote 𝜇𝑖, 𝑗 as the
estimate of the aggregate 𝜇𝑖, 𝑗 . An error specification with a relative
error 𝑒 and confidence 𝑝 means that PilotDB will output a set of
estimated aggregates such that the probability that all estimates
simultaneously have a relative error no greater than 𝑒 (i.e., the
probability of the intersection of events) is at least 𝑝 . Namely,

P


⋂

1≤𝑖≤𝑘,1≤ 𝑗≤𝑚

���� 𝜇𝑖, 𝑗 − 𝜇𝑖, 𝑗

𝜇𝑖, 𝑗

���� ≤ 𝑒

 ≥ 𝑝 (1)

Our error specification limits the joint probability of all estimates
having unexpected errors across aggregations and groups. This is
stronger and more intuitive for users to interpret than prior work
that only reasons about the error of each estimate independently
[5, 58]. We will tackle the joint probability in the next section.

3 Two-Stage Query Approximation

In this section, we focus on addressing the algorithmic challenges
mentioned in Section 2.1. We introduce our two-stage query ap-
proximation algorithm to answer the following three questions:

(1) How can we find a valid sampling plan that satisfies the user’s
error specification (§3.1)?

(2) How can we find an efficient sampling plan that minimizes the
execution cost of TAQA (§3.2)?

(3) How can we achieve (1) and (2) via query rewriting (§3.3)?

3.1 Sample Planning via Pilot Query Processing

We determine sampling plans that satisfy the user’s error specifica-
tion by executing a pilot query that inspects the statistical property
of the input query. To understand what should be inspected through
the pilot query, we first parametrize the sampling plan.

Given a query with 𝑘 tables, a sampling plan should specify the
sampling method and corresponding sampling parameters for each
table. To avoid modifying the DBMSs, we use Bernoulli sampling
where each unit (e.g., a row or a block) is independently selected
with a fixed sampling rate or probability 𝜃 without replacement.
In many DBMSs [62], row-level Bernoulli sampling is supported
through the TABLESAMPLE BERNOULLI clause while block-level
Bernoulli sampling is expressed via TABLESAMPLE SYSTEM.

Although Bernoulli sampling produces variable sample sizes, we
can still provide error guarantees by parameterizing the 𝑘-table
sampling plan into a list of 𝑘 sampling rates: Θ = [𝜃1, . . . , 𝜃𝑘 ]. This
approach allows us to account for the variability in sample sizes
when deriving guarantees. In the rest of this section, we present
the statistical intuition and formulation underlying this approach.

Statistical Intuition. Consider the scenario where the query in-
volves one aggregation computed on one group. We can calculate
the confidence interval to analyze the relative error of the estimate.
Suppose we have a population with mean 𝜇 that is estimated with
a sample mean 𝜇. We denote 𝑉𝑎𝑟 [𝜇] as the variance of 𝜇. We can
establish the following CLT-based confidence interval for 𝜇:

P
[
𝜇 − 𝑧 (1+𝑝 )/2

√︁
𝑉𝑎𝑟 [𝜇] ≤ 𝜇 ≤ 𝜇 + 𝑧 (1+𝑝 )/2

√︁
𝑉𝑎𝑟 [𝜇]

]
≥ 𝑝 (2)

where 𝑧 (1+𝑝 )/2 is the (1 + 𝑝)/2 percentile of the standard normal
distribution. When 𝜇 is positive, Inequality 2 can be equivalently
converted to an inequality on the relative error of 𝜇:

P

[���� 𝜇 − 𝜇

𝜇

���� ≤ 𝑧 (1+𝑝 )/2
√︁
𝑉𝑎𝑟 [𝜇]

𝜇

]
≥ 𝑝

That is, to satisfy the error specification with a maximum relative
error 𝑒 and a confidence 𝑝 , it is sufficient to ensure that

𝑧 (1+𝑝 )/2 ·
√︁
𝑉𝑎𝑟 [𝜇] · 𝜇−1 ≤ 𝑒 (3)

With Inequality 3, we observe that determining 𝜇 and 𝑉𝑎𝑟 [𝜇] is
the key to satisfying the error specification. However, 𝜇 and𝑉𝑎𝑟 [𝜇]
are unknown unless we execute the input query. To address this,
prior work maintains pre-computed samples [5, 28, 66] or modifies
DBMSs to monitor statistics during the query execution [58]. In
TAQA, we estimate 𝜇 and 𝑉𝑎𝑟 [𝜇] by executing a pilot query that is
dynamically rewritten from the input query.

To minimize the latency overhead, the pilot query samples the
table that is most expensive to load. This is achieved in two steps.
First, PilotDB obtains an execution plan of the original query to
inspect the table loading method used by the DBMS. A table is
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considered as a candidate to sample if the DBMS uses scanning.3
Second, PilotDB queries the estimated table cardinality maintained
by the DBMS and samples the largest table that will be scanned.

From the pilot query result, we can estimate the lower bound of
𝜇 and the upper bound of 𝑉𝑎𝑟 [𝜇] where 𝜇 will be computed using
a sampling plan Θ in the final query. We first focus on sampling
one table in the final query and then address sampling multiple
tables in Section 4.3. Assuming 𝜇 is sub-Gaussian,4 these bounds
are estimated using standard technique based on the CLT [44], a
widely used approach in AQP [5, 28, 58, 80]. The sub-Gaussian
assumption implies that 𝜇 has a fast decaying tail bounded above
by a Gaussian distribution. Then, the analytical expression of the
bounding distribution can be derived using CLT asymptotically. We
present a detailed derivation in Appendix B.1.

For instance, given sample size 𝑛 and sample variance �̂� , we have
𝜇−𝜇
�̂�/𝑛 → 𝑡𝑛−1 as 𝑛 → ∞. With sufficiently large 𝑛, we have:

P
[
𝜇 ≥ 𝜇 − 𝑡𝑛−1,1−𝛿 · �̂� · 𝑛−1

]
≥ 1 − 𝛿

where 𝛿 is a pre-specified failure probability and 𝑡𝑛−1,1−𝛿 is 1 − 𝛿

percentile of Student’s t distribution.We can obtain the upper bound
of 𝑉𝑎𝑟 [𝜇] similarly since the ratio between the variance 𝜎2 and its
estimate �̂�2 converges to chi-squared distribution: (𝑛 − 1)�̂�2/𝜎2 →
𝜒2
𝑛−1. Furthermore, as𝑛 follows the binomial distribution 𝐵𝑖𝑛(𝑁, 𝜃 ),

we can estimate the lower bound of 𝑛 given the upper bound of the
population size 𝑁 that is obtained using the pilot query result.

However, this is not sufficient to guarantee the confidence 𝑝 since
these bounds obtained from statistical distributions are probabilistic.
A probabilistic bound can fail with a controllable probability [44].
Therefore, to ensure the overall validity, we adjust the confidence 𝑝
based on the failure probability of all probabilistic bounds we used
in the derivation, which leads to the confidence 𝑝′ in Procedure 1.

Formal Description. We formalize the intuition as follows.

Procedure 1. Consider an input query𝑄𝑖𝑛 that computes a linear

aggregate 𝜇. Suppose a user specifies a maximum relative error 𝑒 and

a confidence 𝑝 . In the first stage, we rewrite 𝑄𝑖𝑛 into a pilot query

𝑄𝑝𝑖𝑙𝑜𝑡 with sampling rate 𝜃𝑝 . Based on the result of 𝑄𝑝𝑖𝑙𝑜𝑡 , we can

calculate (1) 𝐿𝜇 : a probabilistic lower bound of 𝜇, and (2) 𝑈𝑉 [Θ]: a
probabilistic upper bound of𝑉𝑎𝑟 [𝜇] given a sampling planΘ. Namely,

with pre-specified failure probabilities 𝛿1 and 𝛿2, we can obtain the

following inequalities:

P
[
𝜇 ≥ 𝐿𝜇

]
≥ 1 − 𝛿1 (4)

P [𝑉𝑎𝑟 [𝜇] ≤ 𝑈𝑉 [Θ]] ≥ 1 − 𝛿2 (5)

We find a sampling plan Θ such that the following inequality holds

𝑧 (1+𝑝′ )/2 ·
√︁
𝑈𝑉 [Θ] · 𝐿−1𝜇 ≤ 𝑒 (6)

where 𝑝′ is the adjusted confidence based on the probabilities in

Inequalities 4 and 5:

𝑝′ = 𝑝 + 𝛿1 + 𝛿2

Procedure 1 involves three tunable parameters: 𝜃𝑝 , 𝛿1, and 𝛿2.
Intuitively, a smaller 𝜃𝑝 reduces overhead of executing𝑄𝑝𝑖𝑙𝑜𝑡 , while

3Due to the overhead, sampling is often slower than index seeking, which is often
used when the table is indexed and predicates are highly selective.
4Sub-Gaussian assumption holds for any bounded distribution based on Hoeffding’s
inequality. Estimates of aggregate are bounded as tables have finite cardinality.

Table 2: Upper bounds of relative errors of composite estima-

tors with multiplication, division, and addition.

Composite
estimator Upper bound of relative error

𝜇1 · 𝜇2 𝑒𝜇1 + 𝑒𝜇2 + 𝑒𝜇1 · 𝑒𝜇1
𝜇1/𝜇2 (𝑒𝜇1 + 𝑒𝜇2 )/(1 +min(𝑒𝜇1 , 𝑒𝜇2 ))
𝜇1 + 𝜇2 max(𝑒𝜇1 , 𝑒𝜇2 )

a larger 𝜃𝑝 results in tighter estimations. Similarly, an optimal
allocation of probabilities (configurations of 𝛿1 and 𝛿2) can lead to
smaller sampling rates and thus higher query speedups. By default,
we set 𝜃𝑝 = 0.05% and 𝛿1 = 𝛿2 = 1− 𝑝′ = 1−𝑝

3 . In line with existing
literature [41, 46, 58, 59, 92], we recommend configuring 𝜃𝑝 to
ensure that the pilot sample typically includes more than 30 units.
For those requiring optimal performance, we suggest efficiently
tuning 𝛿1 and 𝛿1 using cached pilot query results.

Following Procedure 1, we can obtain an estimated aggregate 𝜇
that satisfies the user’s error specification. We formally state the
guarantee in Theorem 3.1 and present the proof in Appendix B.

Theorem 3.1. Assuming that the aggregate to estimate is sub-

Gaussian, if the input query𝑄𝑖𝑛 is rewritten into a final query𝑄 𝑓 𝑖𝑛𝑎𝑙

based on the sampling plan Θ obtained from the Procedure 1, the

estimated aggregate 𝜇 computed in 𝑄 𝑓 𝑖𝑛𝑎𝑙 satisfies the inequality:

P [| (𝜇 − 𝜇)/𝜇 | ≤ 𝑒] ≥ 𝑝 .

In PilotDB, 𝐿𝜇 and𝑈𝑉 [Θ] cannot be naively obtained through
standard techniques since PilotDB uses block sampling, instead of
row-level sampling. Block sampling introduces correlations among
data from the same block, which breaks the assumption of data
independence in standard techniques [5, 44, 58, 80]. We develop a
set of novel statistical techniques, BSAP, to address that (§4).

Multi-Aggregate Queries. It is common to calculate more than
one aggregate in a single query by computing arithmetic combina-
tions of multiple aggregations, specifying multiple aggregations, or
grouping a table by columns. To guarantee the overall error specifi-
cation on all aggregates, we need to adjust the error requirement
(i.e., the relative error 𝑒 and the confidence 𝑝) for each aggregate.

First, we discuss how TAQA deals with composite aggregates that
compute (nonlinear) arithmetic combinations of simple aggregates,
such as the product of two SUM aggregates. In TAQA, we handle
composite aggregates by propagating the relative error of simple
aggregates (e.g., the sum aggregates) into the composite aggregates
(e.g., the product). In the case of estimating the product of two
simple aggregates, the relative error of the product can be bounded
above by the relative errors of the factors:���� 𝜇1 · 𝜇2 − 𝜇1 · 𝜇2

𝜇1 · 𝜇2

���� ≤ ���� 𝜇1 − 𝜇1
𝜇1

���� ���� 𝜇2 − 𝜇2
𝜇2

���� + ���� 𝜇1 − 𝜇1
𝜇1

���� + ���� 𝜇2 − 𝜇2
𝜇2

����
This inequality shows that it is sufficient to limit the relative error
of factors for the relative error of the product to satisfy the error
specification. In PilotDB, we allocate the relative error requirement
evenly across simple aggregates. Therefore, each simple aggregate
will need to satisfy a relative error of 𝑒′ =

√
𝑒 + 1 − 1.
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We refer to this way of using the relative error of simple aggre-
gates to limit the relative error of a composite aggregate as error
propagation. We introduce propagation rules for multiplication, di-
vision, and addition in Table 2, which are inspired by uncertainty
propagations [55, 77, 96]. The validity of these rules can be proved
with straightforward algebraic transformation. We present the de-
tailed proof in Appendix B.

Second, in the case where a query computes multiple aggregates,
TAQA adjusts the confidence 𝑝 and applies the procedures in Proce-
dure 1 to each of them. Based on our error semantics (§2.4), TAQA
should guarantee that the joint probability of the relative error of
each estimate being less than 𝑒 is at least 𝑝 . To analyze the joint
probability, we apply Boole’s inequality, which decomposes the
probability of a union of events into the sum of probabilities of
individual events:

P


⋂

1≤𝑖≤𝑘,1≤ 𝑗≤𝑚
𝑒𝑖, 𝑗 ≤ 𝑒

 = 1 − P


⋃
1≤𝑖≤𝑘,1≤ 𝑗≤𝑚

𝑒𝑖, 𝑗 ≥ 𝑒


≥ 1 −

𝑘∑︁
𝑖=1

𝑚∑︁
𝑗=1
P

[
𝑒𝑖, 𝑗 ≥ 𝑒

]
where 𝑒𝑖, 𝑗 = | (𝜇𝑖, 𝑗 − 𝜇𝑖, 𝑗 )/𝜇𝑖, 𝑗 | is the relative error of the aggregate
estimate 𝜇𝑖, 𝑗 . This inequality shows that it is sufficient to limit the
summation of the confidence of individual aggregates for the overall
confidence to hold. With such decomposition, we can conveniently
allocate the confidence to each aggregate. In PilotDB, we allocate
the confidence evenly. Namely, if we have 𝑘 ·𝑚 aggregates, each
aggregate 𝜇𝑖, 𝑗 needs to satisfy its relative error requirement with
confidence of 𝑝𝑖, 𝑗 = 1 − 1−𝑝

𝑘𝑚
.

Handling Missing Groups. Till now, we have been focusing on
analyzing the error of estimations. However, for queries with Group
By clauses, it is possible to miss groups in the pilot query due to
block sampling. In this case, we may result in a sampling plan
that does not guarantee errors of aggregates of missed groups. To
address it, TAQA controls the sampling rate of the pilot query to
ensure that groups larger than a user-specified value 𝑔 are not
missed with a high probability. If all groups output by the query
are smaller than 𝑔, TAQA will end up generating a sampling plan
with large sampling rates, making the approximate query more
expensive than the original query. Such sampling plans will be
rejected during the sampling plan optimization (§3.2). Consequently,
PilotDB will execute these queries exactly.

To ensure that all groups with size greater than 𝑔 are included
in the pilot query results with a high probability, we propose the
following lemma that computes the required sampling rate of the
pilot query. We present the proof of the lemma in Appendix B.

Lemma 3.2. For a table 𝑇 with a block size 𝑏, block sampling with

a sampling rate 𝜃 satisfying the condition below ensures that the

probability of missing a group of size greater than 𝑔 is less than 𝑝 𝑓 .

𝜃 ≥ 1 −
(
1 −

(
1 − 𝑝 𝑓

) ⌈𝑔/𝑏 ⌉/|𝑇 | )1/⌈𝑔/𝑏 ⌉
(7)

Intuitively, Lemma 3.2 calculates the minimum sampling rate
to maintain a high group coverage probability. This result extends
the group coverage probability of row-level sampling in prior work

(i.e., Proposition 4 of [58]) to block sampling. Empirically, with
𝑔 = 200 and 𝑝 𝑓 = 0.05, no groups are missed for the queries we
evaluated (§5.3). Nevertheless, there is an opportunity to integrate
block sampling with indexes, such as the outlier index [13], to better
support small-group queries, left to future work.

3.2 Sampling Plan Optimization

For queries with multiple input tables, Procedure 1 often results in
multiple valid sampling plans. TAQA uses optimization methods to
find the most efficient plan. We formulate sampling plan optimiza-
tion as a mathematical optimization problem and derive a solution
using cost models.

Problem Formulation. According to Procedure 1, the error spec-
ification is satisfied if the sampling plan satisfies each constraint
𝜙𝑖, 𝑗 of 𝑖-th aggregation and 𝑗-th group, as defined below:

𝜙𝑖, 𝑗 (Θ) :≡ 𝑧 (1+𝑝𝑖,𝑗 )/2 ·
√︃
𝑈𝑉𝑖,𝑗 [Θ] · 𝐿

−1
𝜇𝑖,𝑗

≤ 𝑒𝑖, 𝑗

where 𝑝𝑖, 𝑗 , 𝑒𝑖, 𝑗 are the adjusted confidence and the relative error
requirement, respectively. The overall constraint Φ(Θ) is defined
as the conjunction of all individual 𝜙𝑖, 𝑗 (Θ).

However, the sampling plan space defined by Φ(Θ) is too broad
to locate the most efficient sampling plan quickly. To further nar-
row down the plan space, we introduce the following additional
conditions. First, due to the overhead of sampling, a query with a
sampling rate larger than 10% can be as expensive as the exact query
(Figure 4). Thus, we only consider sampling plans with sampling
rates smaller than 10%, which is consistent with prior work [58].
Second, we only consider sampling plans that minimize the sample
rate of one of the tables. Finally, we only sample large tables that
are expensive to load, using a similar approach to how we identify
tables to sample in the pilot query. We choose tables that will be
scanned (not seeked) by the DBMS and are of high cardinality (e.g.,
fact tables [60]). In our experiment, we set a threshold of 1 million
rows. These constraints result in the following space of sampling
plans for a query with 𝑙 large tables.

Θ̃ :=
{
argmin

Θ
𝜃𝑖 , 𝑠 .𝑡 . Φ(Θ) ∧ 𝐷 (Θ, 𝑆)

�� 𝑆 ⊂ {1, . . . , 𝑙}, 𝑖 ∈ 𝑆
}

where 𝐷 (Θ, 𝑆) defines the domain of sampling plans:

𝐷 (Θ, 𝑆) :≡ (∀𝑖∈𝑆 0 < 𝜃𝑖 ≤ 0.1) ∧
(
∀𝑖∉𝑆 𝜃𝑖 = 1

)
In PilotDB, we enumerate the sets of tables to sample and the

individual table of which we aim to minimize the sampling rate.
For each optimization problem, we use the trust region method for
fast and robust convergence [12].

Cost-based Optimization. The solved sampling plans Θ̃ often
contain more than one plan. Among them, we must choose the
most efficient one to execute. Unfortunately, measuring the exact
cost is prohibitively expensive, as it requires executing the plan.
Furthermore, cost estimation is a challenging problem, lacking a
universal solution for all DBMSs [103]. In PilotDB, we use the cost
model of the underlying DBMS to estimate the cost. Most DBMSs
offer external APIs to quickly estimate the cost of a query without
executing it [52, 64, 84, 86]. For in-memory databases that may
not have cost estimators, such as DuckDB [89], we estimate the
cost by the volume of scanned data. This is because data scanning
can be much more expensive than data processing for in-memory
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SELECT SUM(x) / SUM(y * z)
FROM T1,T2
WHERE T1.id = T2.f_id AND ���
GROUP BY ���

SELECT SUM(x), SUM(y * z),
       COUNT(*),
       (T1.ctid��TEXT��POINT)[0] bid,
FROM T1 TABLESAMPLE SYSTEM (0.05),
     T2
WHERE T1.id = T2.f_id AND ���
GROUP BY ���, bid

SELECT (SUM(x)/0.03)
       / (SUM(y * z)/0.03)
FROM T1 TABLESAMPLE SYSTEM (3.0),
     T2
WHERE T1.id = T2.f_id AND ���
GROUP BY ���

1

Add block-level aggregations2

1

Add a sampling clause

2

3 Decompose composite
aggregates

3

1 Add sampling clauses
Upscale aggregates2

1

2

2

Pilot Query

Final Query

Input Query

Figure 3: Demonstration of query rewriting with PostgreSQL

syntax. Rewritten parts are emphasized.

databases [89]. Empirically, the latency to sampling plan optimiza-
tion is negligible compared to the overall query execution (§5.6).

Furthermore, exact queries are likely to be cheaper to execute
than approximate queries with large sampling rates, particularly
when small errors are required for queries with high selectivity or
large group cardinality. To address it, PilotDB rejects inefficient
sampling plans when the estimated cost is larger than that of the
exact query. If no sampling plan is feasible, PilotDB will execute
the exact queries.

3.3 Query Rewriting

Throughout TAQA, we use query rewriting to synthesize and execute
intermediate queries on the underlying DBMS. We describe the
high-level procedures to rewrite an arbitrary aggregation query
into (1) a pilot query 𝑄𝑝𝑖𝑙𝑜𝑡 which computes statistics required by
Procedure 1 and (2) a final query 𝑄 𝑓 𝑖𝑛𝑎𝑙 which computes the final
answer based on the sampling plan optimized in Section 3.2. We
demonstrate the query rewriting with an example in Figure 3.

Pilot Query Rewriting. Based on Procedure 1, 𝑄𝑝𝑖𝑙𝑜𝑡 computes
different statistics for different sampling methods. For row-level
Bernoulli sampling, 𝑄𝑝𝑖𝑙𝑜𝑡 can directly compute aggregates, cor-
responding standard deviations, and the sample size. For block
sampling, 𝑄𝑝𝑖𝑙𝑜𝑡 needs to calculate the aggregates and the size for
each sampled block. This requires 𝑄𝑝𝑖𝑙𝑜𝑡 to group the result by
blocks. We achieve this by specifying the location of physical data
blocks as a column expression.5 For example, in DuckDB, we divide
the row ID by the block size; in PostgreSQL, we use the system
column ctid. We summarize the rewriting procedures as follows:

(1) We add a sampling clause (e.g., TABLESAMPLE SYSTEM) to the
largest table in 𝑄𝑖𝑛 .

(2) We incorporate the block location column of the largest table
into Group By clauses to compute block-level aggregates.

(3) We decompose composite aggregates (e.g., SUM(x)/SUM(y))
into simple aggregates.

5Nearly every DBMS that implements TABLESAMPLE SYSTEM supports outputing data
location in some form [31, 49, 50, 85, 87].

0.01 0.1 1 10
Sampling Rate (%)
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Data shuffling
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Figure 4: Comparison of the system efficiency of sampling

methods that do not modify DBMSs. At small sampling rates,

such as 0.01%, block sampling can be 500× faster than others.

Final Query Rewriting. The final query 𝑄 𝑓 𝑖𝑛𝑎𝑙 computes esti-
mates of aggregates using the optimized sampling plan obtained.
We summarize the rewriting procedures as follows:

(1) We add sampling clauses according to the sampling plan.
(2) We upscale the SUM-like aggregates by dividing the product of

sampling rates.

4 Block Sampling for Efficient Online AQP

In this section, we address the statistical challenges mentioned in
Section 2.1. We first present motivations for using block sampling,
examining its benefits and feasibility (§4.1). Next, we develop theo-
retical results that enable block sampling in AQP with statistical
guarantees. That is, we obtain estimations required by Procedure 1
(i.e., 𝐿𝜇 and𝑈𝑉 [Θ]) using block sampling for complex queries with
nested subqueries (§4.2) and Join (§4.3).

4.1 Motivations

Throughout the history of AQP research, a wide range of sampling
methods have been studied, but there is no universal best method
[15]. Nevertheless, to simultaneously achieve P1, P2, and P3, we
argue that block sampling, which samples data blocks, is better
than row-level sampling methods. We will explain this from three
perspectives that are crucial in choosing sampling methods:

(1) System Efficiency: volume of resulting data in a fixed time
(2) Statistical Efficiency: required sample size for a fixed error rate
(3) Feasibility: achieving statistical guarantees on various DBMSs

System Efficiency. Across sampling methods that do not need
DBMS modifications, block sampling achieves higher system effi-
ciency than others. Block sampling improves system efficiency by
skipping scanning non-sampled data. We evaluated the throughput
of block sampling, row-level uniform sampling, and data shuffling
on a 6B-row table. Figure 4 shows the latency to complete an AVG
query over the sampled data with sampling rates from 0.01% to 10%
on PostgreSQL. At small sampling rates (e.g., 0.01%), block sampling
outperforms others by up to 500×. At large sampling rates (e.g.,
10%), all methods have comparable latencies to a full scan.
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Statistical Efficiency. Block sampling can achieve comparable or
higher statistical efficiency compared to row-level uniform sam-
pling. Intuitively, block sampling introduces correlation across data
from the same block, which seems to affect its statistical efficiency.
However, in the case when the data of blocks is heterogeneous, the
statistical efficiency of block sampling can be similar to or better
than row-level uniform sampling. We analyze this with an AVG
query over a table {𝑋𝑖 |1 ≤ 𝑖 ≤ 𝑁 · 𝑏} of 𝑁 blocks and a consistent
block size 𝑏.6 We present the theoretical result in Lemma 4.1 and
defer the proof to Appendix B.

Lemma 4.1. Let 𝜎2
𝑗
be the variance of data in the 𝑗-th block. The

ratio between the sample size of block sampling and that of row-level

uniform sampling to achieve the same accuracy in expectation is

𝑏

(
1 − E

[
𝜎2
𝑗

] /
𝑉𝑎𝑟 [𝑋𝑖 ]

)
.

Based on Lemma 4.1, we analyze the statistical efficiency of
block sampling in two cases. First, when each data block is het-
erogeneous (i.e., E

[
𝜎2
𝑖

]
→ 𝑉𝑎𝑟 [𝑋𝑖, 𝑗 ]), the required sample size

for block sampling can be smaller than that of row-level uniform
sampling, achieving better statistical efficiency. This can happen
when the underlying DBMS has large data blocks. Second, when
each data block is homogeneous (i.e., E

[
𝜎2
𝑖

]
→ 0), the required

sample size for block sampling is up to 𝑏 times that of row-level
uniform sampling. We found that this rarely happens, especially
with deep queries or complex predicates, and is often offset by the
system efficiency of block sampling.

Feasibility. Finally, we evaluate whether it is feasible to use block
sampling to approximately process arbitrary aggregation queries.
We identify two key criteria for this to happen. First, can we obtain
unbiased estimations [58]? It is easy to verify that estimations of
linear aggregates using block sampling are unbiased. For example,
the SUM aggregate can be approximated without bias by adding
summations of data blocks divided by the sampling rate. Second,
can we achieve statistical guarantees of errors [15]? For queries
computing aggregates directly on the output of block sampling,
we can achieve error guarantees by analyzing block-level statistics
[39, 45, 79]. For example, we can obtain a confidence interval of the
mean of the sum of each block with standard CLT. However, it is
non-trivial to achieve error guarantees for deep nested queries and
Join queries. We dedicate the rest of this section to resolving it.

4.2 Deep Nested Queries

Achieving statistical guarantees for sampling-based AQP on deep
nested queries is challenging, especially for non-uniform sampling
methods [58, 73], such as block sampling. This is because the out-
put of sampling is manipulated by subsequent relation operations,
which potentially changes the statistical distribution of the sample.
We use the following pair of queries as an example to demonstrate
such a situation:
-- Q1: the query we execute

SELECT SUM( l_extendedprice * l_discount )

FROM lineitem TABLESAMPLE SYSTEM (0.5%) JOIN parts

ON partkey

WHERE l_shipdate >= DATE '1994 -01 -01' AND ...

6The analysis based on varied block sizes can be similarly derived by treating the block
size as a random variable.

-- Q2: the query we analyze

SELECT SUM( l_extendedprice * l_discount )

FROM ( SELECT * FROM lineitem JOIN parts ON partkey

WHERE l_shipdate >= DATE '1994 -01 -01' AND ... )

AS cte TABLESAMPLE SYSTEM (0.5%)

We can obtain the confidence interval for Q2 by treating the sum
of each block as a random variable, similar to prior work [39, 45, 79].
However, it is unclear how to calculate the confidence interval for
Q1 due to the Join and filters between block sampling and the
aggregation. In this section, we address this issue by analyzing the
interaction between block sampling and relational operations and
establishing rules for sampling equivalence.

Intuition. In general, we prove that block sampling is commutative
withmost relational operations, including projection, selection, Join,
Group By, and Union. In Figure 5, we demonstrate that exchanging
block samplingwith any relational operation that removes data does
not affect the probability distribution of the sample. For relational
operations that add data (e.g., Join), we can always associate added
data with a data block where block sampling operates.

Formalization. To formalize and prove this intuition, we define the
notion of sampling equivalence in terms of sampling probability.

Definition 4.2. Two sampling procedures, S1 and S2, for a set
of 𝑘 relations {𝑇1, . . . ,𝑇𝑘 }, where 𝑘 ≥ 1, are said to be equivalent,
denoted as

S1 ({𝑇1, . . . ,𝑇𝑘 }) ⇔ S2 ({𝑇1, . . . ,𝑇𝑘 })

if, for any possible sample result 𝑅, the probability of obtaining 𝑅
is the same under both sampling procedures 𝑆1 and 𝑆2, i.e.,

∀𝑅, P [S1 ({𝑇1, . . . ,𝑇𝑘 }) = 𝑅] = P [S2 ({𝑇1, . . . ,𝑇𝑘 }) = 𝑅] .

Next, we derive an important property of the sampling equiv-
alence: the identity of the probability distribution of aggregates,
as shown in the following proposition. We present the proof in
Appendix B.

Proposition 4.3. Let S1 and S2 be two equivalent sampling pro-

cedures. For any aggregate function 𝑓 that maps a table to a real

value, the probability distribution of the 𝑓 applied to samples from S1
is identical to the probability distribution of 𝑓 applied to the samples

from S2. Namely, for any real value 𝑥 ,

P
[
𝑓
(
S1 ({𝑇1, . . . ,𝑇𝑘 })

)
= 𝑥

]
= P

[
𝑓
(
S2 ({𝑇1, . . . ,𝑇𝑘 })

)
= 𝑥

]
Based on Proposition 4.3, to show the aggregates computed over

the outputs of two different sampling procedures have the same
distribution, it is sufficient to prove two sampling procedures are
equivalent. Leveraging this, we show that block sampling is commu-
tative with selection, Join, and Union in the following propositions.
We present the proof in Appendix B.

Proposition 4.4. (Selection) For any table 𝑇 , selection 𝜎𝜓 with

a predicate𝜓 , and block sampling B𝜃 with a sampling rate 𝜃 ,

𝜎𝜓 (B𝜃 (𝑇 )) ⇔ B𝜃 (𝜎𝜓 (𝑇 ))

Proposition 4.5. (Join) For any tables𝑇1 and𝑇2, Join Z𝜓 with a

predicate𝜓 , and block sampling B𝜃 with a sampling rate 𝜃 ,

B𝜃 (𝑇1) Z𝜓 𝑇2 ⇔ B𝜃 (𝑇1 Z𝜓 𝑇2)
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Figure 5: Demonstration of the commutativity between block sampling B and relational operations 𝑓𝑅 that remove data (e.g.,

WHERE, JOIN conditions, and GROUP BY); Order of operations does not affect the inclusion probability of each data block.

Proposition 4.6. (Union) Let ∪ be a bag union operation (or

UNION ALL in SQL). For any tables 𝑇1, . . . ,𝑇𝑘 (𝑘 ≥ 2) and block

sampling B𝜃 with a sampling rate 𝜃 ,

𝑘⋃
𝑖=1

B𝜃 (𝑇𝑖 ) ⇔ B𝜃

(
𝑘⋃
𝑖=1

𝑇𝑖

)
Finally, we consider projection and Group By. We find that the

commutativity between block sampling and project is trivial, since
projection is at the column level and thus orthogonal to sampling.
Moreover, Group By operations can be considered as a special case
of selection with a predicate on the grouping columns.

We conclude these equivalence rules with the following standard
form for any supported aggregation query 𝑄 :

𝑄 ⇔ AGG
(
Z𝑘𝑖=1 B𝜃𝑖 (𝑇𝑖 )

)
(8)

where 𝑇𝑖 is the output table of intermediate relational operations
and 𝜃𝑖 is the sampling rate of the 𝑖-th input table. This result is
obtained by applying our equivalence rules recursively across the
query. Intuitively, if an aggregation query executes block sampling
on one input table (𝑘 = 1), it is equivalent to the query that com-
putes aggregate directly on a block sample. In this case, we can
calculate the estimates at the block level and use standard tech-
niques to analyze the error [39]. If a query executes block sampling
on multiple input tables (𝑘 > 1), it is equivalent to the query that
computes aggregate on the Join of block samples.

We show that our sampling equivalence rules are stronger than
sampling dominance rules of QuickR. First, the sampling domi-
nance rules ensure accuracy dominance in only one direction and
do not establish the equivalence. Second, using dominance rules
are insufficient for proving the equivalence, as they only consider
the inclusion probability of one or two sampled units (i.e., c- and
v-dominance). In contrast, our equivalence rules consider the joint
inclusion probability of the entire sample. As a result, when two
sampling plans are equivalent in our definition, they inherently
satisfy sampling dominance.

4.3 Join Queries

When the input query hasmultiple large tables, TAQA tries to execute
block sampling on multiple tables, which leads to Equation 8 with
𝑘 > 1. To analyze the query error with TAQA, we need to (1) ensure
Procedure 1 is valid by investigating the asymptotic distribution of
the aggregate over the Join of multiple block samples and (2) obtain

two estimates 𝐿𝜇 and 𝑈𝑉 [Θ] that are necessary for TAQA to plan
sampling (§3.1).

Failure of the NaiveMethod.However, due to correlations within
blocks and across Join results, the asymptotic distribution of Equa-
tion 8 with 𝑘 > 1 is not governed by standard CLT [16, 39, 48].
Naively applying the standard CLT to calculate confidence inter-
vals can lead to invalid guarantees. We show this failure through the
following query that Joins two large tables and uses block sampling
on both tables:
SELECT SUM( price ) FROM lineitem TABLESAMPLE SYSTEM (1%)
INNER JOIN orders TABLESAMPLE SYSTEM (5%)
WHERE l_orderkey = o_orderkey AND comment LIKE '% special %'

The “confidence interval” obtained through standard CLT with a
95% intended confidence may only achieve a coverage probability
as low as 8%.7

Our Solutions.We show that the sample mean still asymptotically
converges to a normal distribution when multiple tables of a Join
operation are sampled at the block level. However, the variance is
not in the standard form. We first present the asymptotic conver-
gence in Theorem 4.7 and defer the proof to Appendix B. Theorem
4.7 are inspired by [39] but extends their theory to sampling with
different rates. We present the theorem in a standard way using
the block-level AVG aggregate. The result for SUM and COUNT can be
obtained similarly, while the row-level AVG can be considered as a
ratio between SUM and COUNT.

Theorem 4.7. Suppose a Join operation is executed on a set of

𝑘 tables {𝑇1, . . . ,𝑇𝑘 }, where each table 𝑇𝑖 has a set of 𝑁𝑖 blocks:

{𝑡𝑖,1, . . . , 𝑡𝑖,𝑁1 }. Let J (∗) be a function that takes as input 𝑘 blocks

of different tables and produces the sum of the Join result of these

blocks. We denote 𝜇 as the block-level mean of the Join result:

𝜇 =

(
𝑘∏
𝑖=1

𝑁𝑖

)−1 𝑁1∑︁
𝑖1=1

· · ·
𝑁𝑘∑︁
𝑖𝑘=1

J (𝑡1,𝑖1 , . . . , 𝑡𝑘,𝑖𝑘 ) (9)

For each Join table 𝑇𝑖 , we execute the block sampling with a sample

size of 𝑛𝑖 blocks. We denote 𝜇 as the block-level mean of the Join result

of block samples. Then, we can have the following convergence

𝜇 − 𝜇
𝐷−→ N(0,𝑉𝑎𝑟 [𝜇]) as 𝑛𝑖 → ∞ (10)

where 𝑉𝑎𝑟 [𝜇] is the (unknown) variance of 𝜇.

7We evaluated the query on DuckDB with the 1,000-scaled TPC-H 1,000 times.
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Table 3: Characteristics of workloads.

Benchmark #Queries #Queries w/ Join Max/Avg. #groups

TPC-H 9 7 175/22
ClickBench 7 0 17/3

SSB 10 10 150/38
Instacart 9 7 146/22
DSB-DBest 169 42 261/52

Theorem 4.7 validates our TAQA algorithm on queries where
multiple tables are sampled at the block level. To obtain concrete
sampling plans, Procedure 1 requires a lower bound of aggregate:
𝐿𝜇 and an upper bound of the variance of the aggregate estimator:
𝑈𝑉 [Θ]. We show the results of𝑈𝑉 [Θ] for the two-table sampling
with a SUM aggregate. 𝐿𝜇 can be derived based on standard proba-
bilistic inequalities, such as Chebyshev’s Inequality [44]. We defer
the proof to Appendix B.

Lemma 4.8. Consider a query which Joins two tables 𝑇1 and 𝑇2.
Without loss of generality, we suppose that in the pilot query, block

sampling with a tiny sampling rate 𝜃𝑝 is executed on 𝑇1, resulting in
𝑛𝑝 blocks. Given a final sampling plan Θ = [𝜃1, 𝜃2], the probability
that the variance of the SUM estimate has an upper bound defined as

follows is at least 1 − 𝛿2:

𝑈𝑉 [Θ] = 1 − 𝜃1
𝜃1

𝑈𝑦 (1)

[
𝛿2

𝑁2 + 2

]
+ 1 − 𝜃2

𝜃2

𝑁2∑︁
𝑖2=1

(
𝑈
𝑦
(2)
𝑖2

[
𝛿2

𝑁2 + 2

] )2
+ (1 − 𝜃1) (1 − 𝜃2)

𝜃1𝜃2
𝑈𝑦 (3)

[
𝛿2

𝑁2 + 2

]
where 𝑦

(1)
𝑖

=

(∑𝑁2
𝑖2=1 J

(
𝑡1,𝑖 , 𝑡2,𝑖2

) )2
, 𝑦

(2)
𝑖2,𝑖

= J
(
𝑡1,𝑖 , 𝑡2,𝑖2

)
, 𝑦 (3) =∑𝑁2

𝑖2=1 J
(
𝑡1,𝑖 , 𝑡2,𝑖2

)2
, and𝑈𝑦 [𝛿] is the upper bound of the Student’s t

confidence interval of the summation of 𝑦 with 1 − 𝛿 confidence [44].

5 Evaluation

In this section, we evaluate PilotDB with experiments to answer
the following questions:
(1) Does PilotDB achieve statistical guarantees (§5.2)?
(2) How much can PilotDB accelerate queries (§5.3)?
(3) How much can BSAP improve existing online AQP (§5.4)?
(4) What are the individual contributions of TAQA and BSAP to

overall performance (§5.5)?

5.1 Experiment Settings

Benchmarks. We evaluate PilotDB on a diverse set of bench-
marks, including four benchmarks that are widely used in prior
work [5, 9, 28, 42, 61, 66, 80] and a benchmark that simulates real-
world data with skewed distributions [27]. Other real-world bench-
marks used in prior work are proprietary [5, 28]. Thus, we cannot
evaluate PilotDB on those benchmarks.
• TPC-H and SSB are synthetic benchmarks for decision-making
[25] and star-schema data warehousing [76], respectively. We
use a scale factor of 1,000.

• ClickBench is a real-world benchmark obtained from the traffic
recording of web analytics [22]. We scale up the raw data by 5×,
resulting in a pre-processed size of 200GB.

• Instacart is a micro-benchmark with real-world data from the
Instacart [53] and queries from TPC-H. We scale up the original
data by 100× using the same method as VerdictDB [80].

• DSB is a synthetic benchmark based on TPC-DS, blended with
skewed yet real-world data distributions, including the (bucketed)
exponential distribution and correlations across columns [27].We
use a scale factor of 1,000. To cover the skewness in aggregation,
Join, and Group By columns, we use the queries from DBest [67].

In line with previous AQP studies [75, 80], we exclude queries with
an empty result, correlated subqueries, and a large group cardinality.
In production scenarios, PilotDB can identify those queries via
TAQA and execute the exact query. We summarize the key statistics
of the workloads in Table 3. A large portion of queries contain Join
and various numbers of groups.

DBMSs.We evaluate PilotDB on three DBMSs: PostgreSQL 16.3,
SQL Server 2022, and DuckDB 1.0. DuckDB is an open-source in-
memory column-oriented DBMS[89]. The default block sampler
of DuckDB always scans the entire column, which is less efficient
compared to PostgreSQL and SQL Server. To improve the efficiency
of DuckDB’s block sampling, we add optimization rules that push
down block sampling to sequential scanning. Our extension has
been merged in DuckDB 1.2.

Baselines. As far as we know, PilotDB is the first AQP system
that simultaneously achieves P1, P2, and P3. There are no directly
comparable AQP systems to use as a baseline. Hence, we compare
PilotDBwith executing exact queries on DBMSs that have state-of-
the-art query optimizations. In addition, we compare with Quickr
[58], the state-of-the-art online AQP system.Quickr achieves P1
and P2 but fails to fulfill P3, which is the closest to PilotDB.

Testbed. Our experiments are conducted on CloudLab [32] r6525
nodes, each equipped with 256GB RAM, 1.6TB NVMe SSD, and two
32-core AMD 7543 CPUs. 8 Before executing each query, we clear
both the operating system cache and the query plan cache.

5.2 PilotDB Guarantees Errors

We first evaluated whether PilotDB achieves a priori error guar-
antees. We executed each query from the five benchmarks on Post-
greSQL 20 times, each with different targeted error rates–the maxi-
mum relative error in the specification (§2.4). We set the confidence
to 95% and measured the maximum relative error of aggregates. By
default, we sampled at 0.05% during the planning stage of TAQA.
If the input query has Group By clauses, we use Lemma 3.2 with
𝑔 = 200, 𝑝 𝑓 = 0.05 to compute the sampling rate for planning.

Figures 6 and 7 show the achieved errors for each benchmark
with various targeted errors. The bars in the figure represent the
minimum and maximum achieved errors across all queries and
executions, while the dots indicate the average achieved errors. For
reference, we plot a dashed red line to show the case when the
achieved error equals the targeted error. As shown, the achieved

8256GB RAM is large enough for DuckDB to fit in required columns for individual
queries after default compressions.
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(a) TPC-H.
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(b) SSB.

1.0 2.5 5.0 7.5 10.0
Targeted error (%)

0.0

2.5

5.0

7.5

10.0

Ac
hi

ev
ed

 e
rro

r (
%

) Achieved=Targeted
PilotDB

(c) ClickBench.
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(d) Instacart.

Figure 6: PilotDB achieves error guarantees on TPC-H, SSB, ClickBench, and Instacart. The achieved error is smaller than

targeted error if the result is below the red dashed line. We show the maximum, mean, and minimum errors in 20 executions.
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Figure 7: PilotDB achieves the targeted errors on DSB, which

has skewness on aggregation columns, Join columns, and

Group By columns.

errors of PilotDB are always less than the targeted errors. Further-
more, we find that none of the evaluated queries miss groups.

We observe that PilotDB guarantees errors conservatively, with
the maximum achieved errors being approximately half of the tar-
geted errors. This arises because the sampling rates determined by
TAQA are guaranteed to be sufficiently large but may not always
be the minimum necessary to meet the user’s error specifications.
For example, we apply Boole’s Inequality to tackle the joint proba-
bility of multiple events. The equality holds only when events are
mutually exclusive. To ensure the sampling rates are also the min-
imum necessary, it is crucial to analyze the correlations between
aggregates, which will be a future work.

We also evaluated the achieved errors when BSAP is replacedwith
a standard CLT-based confidence interval. We show that without
BSAP, the achieved error can be up to 52× higher (1.7× higher on
average) than the target error, highlighting the contribution and
necessity of BSAP.

5.3 PilotDB Accelerates Query Processing

We analyze the performance of PilotDB by evaluating it on various
DBMSs, with different targeted errors, and across all five bench-
marks. The query execution follows the setting in Section 5.2.

PilotDB Accelerates Queries across Various DBMSs. We eval-
uated PilotDB on TPC-H, ClickBench, SSB, and Instacart across
three DBMSs, targeting a 5% error and 95% confidence. We executed
each query in each DBMS 10 times and calculated the geometric
mean (GM) of speedups.

Figure 8 provides a detailed view of performance on each data-
base, showing the cumulative probability function (CDF) of speedups

compared to exact query execution. As shown, PilotDB consis-
tently accelerates 80% of queries across all DBMSs. Moreover, Pi-
lotDB achieves up to 126× speedup on transactional databases and
up to 13× speedup on an analytical database, DuckDB. In the worst
case, PilotDB slows down the execution by at most 8%. This is
because the sample planning stage involve executing a pilot query,
the primary overhead causing the loss in performance.

We observe that PilotDB performs better on PostgreSQL and
SQL Server than on DuckDB. This is because DuckDB is opti-
mized for in-memory processing. When the data fits in the memory,
DuckDB processes queries faster than transactional databases.

PilotDB Accelerates Queries on Skewed Data. To demonstrate
the performance of PilotDB on skewed data distributions, we
evaluated PilotDB on DSB with a diverse set of 97 aggregation
queries, 30 queries with Group By, and 42 queries with Join [67].
We executed each query 10 times on PostgreSQL and calculated the
geometric mean of speedups.

Figure 10a shows the CDF of query speedups of PilotDB on
DSB. As shown, PilotDB accelerates queries over skewed data by
up to two orders of magnitude compared to exact queries on Post-
greSQL. To understand how PilotDB performs on different types of
queries and skewness, we group query speedups by the query type
in Figure 10b. “Agg.” refers to simple aggregation queries where the
data of aggregated columns is exponentially distributed. “GroupBy”
and “Join” refer to queries with exponentially distributed data in
the Group By dimension or Join columns, respectively. PilotDB
achieves 55× overall speedup and 125× speedup on simple aggre-
gation queries. On Group By and Join queries, PilotDB achieves
1.4× and 4.3× speedup, respectively. This is relatively small com-
pared to simple aggregation queries, but still significant compared
to row-level uniform sampling which has 0.9× speedup on average.

PilotDB Accelerates Queries with Various Error Targets.

To study how PilotDB performs with different error targets, we
evaluated the performance of PilotDB with error targets 1%-10%
on PostgreSQL. We executed each query 10 times for each error
target and calculated the geometric mean of speedups.

Figure 9 shows the speedup according to different targeted errors.
We observe that PilotDB achieves query speedups for all evaluated
targeted errors. Even with a small targeted error of 1%, PilotDB
achieves 1.6× speedup. As expected, we find that PilotDB achieves
higher speedups at larger targeted errors.
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Figure 8: PilotDB achieves 0.92-126× speedups over exact execution across three DBMSs.
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Figure 10: PilotDB accelerates queries on skewed data.
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Figure 12: BSAP improves the

speedup of Quickr by up to

60× on DuckDB.

Comparison withQuickr.We compared PilotDBwith the state-
of-the-art online AQP systemQuickr. SinceQuickr is not open-
sourced, we consider a strict performance upper bound of it. Specif-
ically, as mentioned explicitly in their paper [58], Quickr requires
one pass over the data. Therefore, we consider the data scanning
time on each DBMS as the performance upper bound (i.e., latency
lower bound) of Quickr. We give Quickr the benefit of paralleliz-
ing scanning with all CPU cores and only consider the elapsed time
of the longest scanning operation.

Figure 11 demonstrates the upper bound speedup of Quickr and
the speedup of PilotDB across three DBMSs. As shown, PilotDB
demonstrates significantly higher query speedup by 1.2-4.2×. Com-
pared to Quickr which always scans the whole data, PilotDB
achieves better efficiency by skipping non-sampled data blocks.

Table 4: Geometric mean of the slowdowns of PilotDB com-

pared to PilotDB-O.

PostgreSQL SQL Server DuckDB

PilotDB (overall) 1.61× 1.21× 1.27×
PilotDB (2nd stage) 1.04× 1.08× 1.19×

5.4 BSAP Augments Existing Online AQP

In this section, we evaluated whether and how much BSAP can
improve the performance of existing online AQP. We used TPC-
H queries whereQuickr applies row-level uniform sampling. On
those queries, we reproduceQuickr in DuckDB by manually adopt-
ing the rules described in [58] and then rewriting queries with
parallelized row-level uniform sampling. We incorporate BSAP into
Quickr by further (1) replacing the uniform sampling with block
sampling and (2) adapting the Horvitz-Tompson estimator with
the error analysis of BSAP. Finally, we target a 10% error, which is
consistent with the setting inQuickr’s paper [58].

Figure 12 shows the speedups of Quickr+BSAP and original
Quickr, compared to exact queries on DuckDB. As shown,Quickr+
BSAP achieves higher speedups by 4.9-60×. We find that these eval-
uated queries typically have a latency bottleneck at table scanning.
In this case, BSAP can significantly accelerate existing online AQP
by skipping non-sampled blocks when scanning tables.

5.5 Ablation Study

We evaluated the effectiveness of the design choices of PilotDB
by comparing PilotDB with its alternative configurations.

(1) We replace TAQA with pre-computed statistics (PilotDB-O).
(2) We replace BSAP with row-level sampling (PilotDB-R).
(3) We replace Bernoulli sampling with fixed-size sampling.

We used the same setting as Section 5.3 for query executions.

PilotDB Achieves Near-Optimal Performance. In TAQA, we
use estimations based on a pilot query to determine the sampling
rates for a given error specification (§2.4). To understand the impact
of those estimations on the performance of PilotDB, we compare it
with PilotDB-O, which represents the upper-bound performance
achievable for AQP that uses online block sampling. For each query,
we measure the latency of PilotDB-O, PilotDB, and the second
stage of PilotDB. We executed all queries in our benchmarks.
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Figure 14: PilotDB achieves >6× speedup

across various 𝜃𝑝 .
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Figure 15: PilotDB achieves 4.8-10.0×
speedups for various (𝛿1, 𝛿2).

Table 5: Speedups of PilotDB over PilotDB-R.

PostgreSQL SQL Server DuckDB

Geometric mean 12.6× 9.37× 1.92×
Maximum 219× 71.4× 13.2×

Table 4 shows the slowdowns of PilotDB compared to PilotDB-
O, computed as the ratio of their latencies. Compared to PilotDB-O,
PilotDB is only 21%-61% slower, showing the effectiveness of TAQA.
However, the latency of PilotDB-O does not include the time to
determine sampling rates, which requires executing the original
input query. To decouple factors that affect the final latency, we
also exclude the time to determine the sampling rates in PilotDB,
leaving the latency of the second stage of PilotDB. As shown in
Table 4, the latency of the second stage of PilotDB is only 4%-
19% higher than PilotDB-O. This demonstrates that the optimized
sampling plan of PilotDB is close to optimal.

PilotDB Outperforms Row-level Bernoulli Sampling. In Sec-
tion 4, we showed the advantage of BSAP over uniform row-level
samplingwith amotivating experiment in Figure 4. Here, we demon-
strate the benefit of BSAP in terms of end-to-end latency. We com-
pared PilotDB and PilotDB-R across all the benchmarks. In Pi-
lotDB-R, we use the default row-level Bernoulli sampling in each
DBMS as the sampling method. That is, we rewrite queries in Post-
greSQL and DuckDB with “TABLESAMPLE BERNOULLI(p)”, where
“p” is the sampling rate, and in SQL Server with “WHERE rand() <
p”, where “rand()” outputs a random number in [0,1].

Table 5 summarizes the speedup of PilotDB compared to Pi-
lotDB-R. We show the geometric mean and maximum speedup for
each DBMS. PilotDB achieves a higher geometric mean speedup
by 8.0× and a higher maximum speedup by 219×, compared to
PilotDB-R. We observe that PilotDB provides a greater benefit on
PostgreSQL and SQL Server compared to DuckDB. This is because
DuckDB is columnar, which, unlike Postgres and SQL Server, allows
it to scan selected columns.

Comparison with Fixed-size Sampling. We compare PilotDB
with fixed-size sampling at the row and block level. We use “ORDER
BY RANDOM() LIMIT sample_size” for row-level fixed-size sam-
pling. Furthermore, only PostgreSQL supports block-level fixed-size
sampling, via an extension: tsm_system_rows [98]. We repeat both

methods on PostgreSQL for TPC-H 10 times, targeting 5% error and
95% confidence. In terms of the geometric mean speedup, PilotDB
outperforms row-level fixed-size sampling by 93.3× and under-
performs block-level fixed-size sampling by 3.8%. This is because
Bernoulli sampling leads to varied sample size which requires sam-
pling more data to maintain the same error guarantees, compared
to fixed-size sampling. However, the performance loss is small since
the probability of size variation decreases exponentially as the vari-
ation amount increases, according to the Chernoff Bound on the
Binomial distribution [57].

5.6 Latency Decomposition

We decompose the latency of PilotDB into three parts (1) sample
planning (§3.1), (2) plan optimization (§3.2), and (3) final execution.
We executed each query on PostgreSQL 10 times and calculated
the geometric mean of their latencies. Figure 13 demonstrates the
latency proportion of each part. As shown, the sample planning via
pilot query execution is the major overhead, while the final query
execution constitutes the majority of the total latency.

5.7 Sensitivity Analysis

We conducted a sensitivity analysis of PilotDB’s performance across
a wide range of parameter settings in Procedure 1: 𝜃𝑝 , 𝛿1, and 𝛿2.

Impact of the pilot query sampling rate (𝜃𝑝 ).We executed TPC-
H Query 6 on PostgreSQL with various 𝜃𝑝 values (0.05%-10%), aim-
ing for 1% errors and 95% confidence. Figure 14 shows maximum,
minimum, and geometric mean speedups achieved by PilotDB
across 10 executions. We find that the speedup is non-monotonic
with respect to 𝜃𝑝 : performance declines at low sampling rates due
to loose estimations and at high rates due to expensive sample plan-
ning. Nevertheless, PilotDB achieves >6× speedups consistently.

Impact of the failure probability allocation (𝛿1, 𝛿2). We exe-
cute TPC-H query 6 on PostgreSQL with various 𝜃1 and 𝜃2 values
(0.1%-4.8%) , targeting a 1% error. According to Procedure 1, we
ensure 𝛿1 + 𝛿2 + 𝑝′ = 5% to maintain the 95% confidence for the
error guarantees. Figure 15 shows the geometric mean speedup
of PilotDB across 10 executions. As shown, PilotDB achieves
4.8-10.0× speedups, with the maximum speedup at 𝛿1 = 0.2% and
𝛿2 = 4.6%. Our default setting leads to 21% lower speedup com-
pared to the optimal configuration. For scenarios requiring optimal
speedups, we can efficiently tune 𝛿1 and 𝛿2 with cached pilot query
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results or incorporate 𝛿1 and 𝛿2 as optimizable parameters during
the sampling plan optimization.

6 Related Work

Online AQP.Generating samples of large tables upon query arrival
is widely studied in prior AQP techniques [33, 58, 73, 74, 104, 107,
108]. Prior work formulated random sampling as a standard opera-
tion in query processing to estimate aggregates and used analytical
or bootstrap confidence intervals to measure the estimation error
[73, 74, 82, 104, 107, 108]. As a step further for complex queries,
Quickr injects sampling operations in the query plan level and
integrate sample planning with query optimization to achieve ac-
celeration and a priori error guarantees [58]. Additionally, Idea
reuses previous results to accelerate future approximate queries
[33]. More recently, Taster combines online and offline methods
by caching the online samples for future reuse [75].

Although existing online AQP systems return estimation errors,
they cannot provide a priori error guarantees without modifying
the underlying DBMS. In addition to the DBMS modifications, state-
of-the-art methods with a priori error guarantees slow down a
significant part of queries compared with exact execution [58, 75]
or lead to errors as big as 100% [58].

Offline AQP. Prior work developed two types of offline AQP meth-
ods: summary-based methods [18, 35, 36, 72, 78, 81, 83, 93] and
sampling-based method [1–5, 8, 13, 14, 28, 34, 66, 75, 80]. The pri-
mary idea of summary-based offline AQP is to compress or sum-
marize columns through numeric transformations. Therefore, they
cannot process queries with non-numeric columns, such as categor-
ical columns, or with complex relational operations, such as join
and grouping.

Offline Sampling-based AQP generate offline samples to an-
swer online queries. Aqa developed the method of rewriting
queries with pre-computed samples [1–4]. Subsequently, various
optimizations in offline sample creation have been proposed, such as
weighted sampling [8, 34], stratified sampling [14], and outlier index
[13]. Prior work has explored guaranteeing errors a priori by gener-
ating specialized samples for non-nested queries [66], sparse data
distribution [105], queries over specific columns [5], and queries
with specific selectivities [28]. Furthermore, VerdictDB developed
offline AQP as middleware to avoid modifications to DBMSs [80].

Offline sampling-based AQP methods have two limitations. First,
their a priori error guarantees are limited to predictable work-
loads [5, 28, 66, 105]. For example, BlinkDB requires that incoming
queries output columns in a pre-defined column set; Sample+Seek
relies on the pre-knowledge of the query selectivity to select the
right processing policy (i.e., sample or seek). Moreover, maintaining
offline samples requires special effort and costs, including regularly
refreshing samples to ensure statistical correctness and regenerat-
ing samples when the database changes [1, 5, 80].

Online Aggregation. Previous research has explored interactive
processing of aggregation queries, providing initial results immedi-
ately and improving accuracy as more data is sampled [10, 29, 37,
40, 54, 94, 102, 106]. OLA, first proposed by Hellerstein et al. [40],
has been subsequently improved to support join queries [37, 65],

scalable processing on large databases [29, 54], processing multi-
ple queries simultaneously [102], and complex aggregates [106].
Furthermore, ProgressiveDB explored online aggregation as an
extension to existing DBMSs using progressive views [10]. Recently,
DeepOLA tackled nested queries for online aggregation [94].

Although OLA techniques can continuously update confidence
intervals, it is invalid to consider the monitored confidence interval
as an error guarantee due to the problem of peeking at early results
[56]. Nevertheless, OLA can be integrated with the second stage of
PilotDB to provide constantly updating results, thereby improving
the interactivity and user experience.

Block Sampling. In block sampling, data is sampled at the level
of physical data blocks or pages, a method widely recognized as
a more efficient sampling scheme than row-level sampling [19–
21, 38, 45, 91]. Prior work has studied confidence intervals for
aggregates computed directly over the output of block sampling
[19, 45, 79], block sampling mixed with row-level sampling (i.e.,
bi-level sampling) [20, 38], and improved the statistical efficiency
of block sampling with block-level summary statistics [91]. How-
ever, statistical guarantees for complex approximate queries (e.g.,
nested queries and Join queries) with block sampling have not been
investigated in literature.

7 Conclusion

We propose PilotDB, an online AQP system that achieves (1) a
priori error guarantees, (2) no maintenance overheads, and (3) no
DBMS modifications. To achieve these properties, we propose a
novel online AQP algorithm, TAQA, based on query rewriting and
online sampling. To accelerate queries with TAQA, we formalize
block sampling with new statistical techniques to provide guar-
antees on nested queries and Join queries. Our evaluation shows
that PilotDB consistently achieves a priori error guarantees and
accelerates queries by 0.92-126× on various DBMSs.
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A Additional Experiments

A.1 Failures of TAQA with Standard CLT on

Queries with Block Sampling

In this section, we empirically evaluate whether we can apply TAQA
with standard CLT on queries with block sampling. To do that,
we treat queries with block sampling in the same way as treat-
ing queries with row-level Bernoulli sampling. Specifically, 𝐿𝜇 is
calculated using a one-sided confidence interval on 𝜇.𝑈𝑉 [Θ] is cal-
culated using (1) an upper bound of the standard deviation, which
is governed by a chi-squared distribution, and (2) a lower bound
of the sample size given Θ, which is governed by a binomial dis-
tribution [44]. We execute all queries in Table 3 for 20 times on
PostgreSQL. We use the same setting as Section 5.2 to calculate and
record errors.

We show the errors of all queries in Figures 16 and 17. As shown,
the maximum errors of queries with block sampling can be up
to 52× higher than the user-specified error requirement. These
experiments demonstrate that standard CLT is not sufficient to
analyze errors of queries with block sampling in TAQA, motivating
the development of BSAP.

A.2 Additional Sensitivity Study

In this section, we analyze the performance of PilotDB under var-
ious settings. The execution follows the same setting as described
in Section 5.3.

Impact of Selectivity.We analyze how the selectivity of the query
affects the performance of PilotDB. Specifically, we modify the
predicate of TPC-H query 6 to represent different selectivities, tar-
geting a 1% error. Figure 18 shows the speedups of PilotDB with
various selectivities. As expected, PilotDB achieves better perfor-
mance with higher selectivity. This is because we require smaller
sampling rates for queries with higher selectivity to achieve the
same requested error.

Impact of Data Size. We analyze how the data size affects the
performance of PilotDB. Specifically, we execute TPC-H query
6 on PostgreSQL with various scale factors. Figure 19 shows the
speedups of PilotDB with 50GB to 1,500GB data. We observe that
speedups of PilotDB increase monotonically regarding the data
size, demonstrating that PilotDB is suitable for big data analytics.

B Proofs of Theoretical Statements

B.1 Derivation of Probabilistic Bounds

We first consider row-level Bernoulli sampling on one table of the
query in the following lemma.

Lemma B.1. We assume that the mean estimator over an arbitrary

queried table is sub-Gaussian. Suppose the pilot query with sampling

rate 𝜃𝑝 results in the sample size 𝑛𝑝 , the sample mean 𝜇𝑝 , and the

sample variance �̂�2𝑝 . Let 𝜇 be the sample mean obtained via a final

query with sampling rate 𝜃 . When 𝑛𝑝 → ∞, we have

P

[
𝜇 ≥ 𝜇𝑝 − 𝑡𝑛𝑝−1,1−𝛿1 ·

�̂�𝑝

𝑛𝑝

]
≥ 1 − 𝛿1

P

𝑉𝑎𝑟 [𝜇] ≤
𝑛𝑝 − 1

𝜒2
𝑛𝑝−1,1−𝛿2/3

�̂�2𝑝

𝐿𝑁 𝜃 − 𝑧1−𝛿2/3
√︁
𝐿𝑁 𝜃 (1 − 𝜃 )

 ≥ 1 − 𝛿2

where 𝑡𝑛𝑝−1,1−𝛿1 is the 1 − 𝛿1 percentile of the Student-t distribution
with 𝑛𝑝 − 1 degrees of freedom, 𝑧1−𝛿2/3 is the 1 − 𝛿2/3 percentile of
the normal distribution, 𝜒𝑛𝑝−1,1−𝛿2/3 is the 1 − 𝛿2/3 percentile of the
chi-squared distribution with 𝑛𝑝 − 1 degrees of freedom, and 𝐿𝑁 is

the calculated as

𝐿𝑁 =

(√︄
𝑛𝑝

𝜃𝑝
+ 𝑧21−𝛿2/3

1 − 𝜃𝑝

4𝜃𝑝
−

√︄
𝑧21−𝛿2/3

1 − 𝜃𝑝

4𝜃𝑝

)2
Proof. The probabilistic lower bound of 𝜇 can be obtained by di-

rectly applying CLT on the pilot query results [44]. Simultaneously,
we can obtain a probabilistic upper bound of the variance:

P

𝜎2 ≤
𝑛𝑝 − 1

𝜒2
𝑛𝑝−1,1−𝛿2/3

�̂�2𝑝

 ≥ 1 − 𝛿2
3

Let 𝑛 be the sample size of the final query. We can then express the
variance of 𝜇 as 𝑉𝑎𝑟 [𝜇] = 𝜎2

𝑛 . Therefore, we have

P

𝑉𝑎𝑟 [𝜇] ≤
𝑛𝑝 − 1

𝜒2
𝑛𝑝−1,1−𝛿2/3

�̂�2𝑝

𝑛

 ≥ 1 − 𝛿2
3

(11)

Next, we calculate the lower bound of𝑛 given the sampling rate 𝜃 .
We observe that 𝑛 follows a binomial distribution 𝐵𝑖𝑛(𝜃, 𝑁 ), where
𝑁 is the total number of units to sample. To simplify calculation, we
approximate 𝐵𝑖𝑛(𝜃, 𝑁 ) with a normal distribution N(𝑁𝜃, 𝑁𝜃 (1 −
𝜃 )) [6, 44, 80]. Then, we have the following probabilistic bound:

P
[
𝑛 ≥ 𝑁𝜃 − 𝑧1−𝛿2/3

√︁
𝑁𝜃 (1 − 𝜃 )

]
≥ 1 − 𝛿2

3
(12)

Finally, we calculate the lower bound of 𝑁 based on the pilot
query result. We also apply the normal approximation to the bino-
mial distribution 𝐵𝑖𝑛(𝜃𝑝 , 𝑁 ). We can obtain the following bound:

P
[
𝑛𝑝 ≤ 𝑁𝜃𝑝 + 𝑧1−𝛿2/3

√︃
𝑁𝜃𝑝 (1 − 𝜃𝑝 )

]
≥ 1 − 𝛿2

3
Then, we can calculate the following upper bound for 𝑁 :

P

𝑁 ≥
(√︄

𝑛𝑝

𝜃𝑝
+ 𝑧21−𝛿2/3

1 − 𝜃𝑝

4𝜃𝑝
−

√︄
𝑧21−𝛿2/3

1 − 𝜃𝑝

4𝜃𝑝

)2 ≥ 1 − 𝛿2
3

(13)
We can chain Inequalities 11, 12, and 13 and obtain the final

probabilistic upper bound for 𝑉𝑎𝑟 [𝜇]. □

Discussion of 𝑛𝑝 → ∞. Our derivation of probabilistic bounds
is based on CLT, which holds asymptotically as 𝑛𝑝 → ∞. In con-
sistent with literature [41, 46, 58, 59, 92], we consider 𝑛𝑝 = 30 is
sufficiently large. To have more conservative guarantees, we can
use the Chernoff bounds for sub-Gaussian random variables to
derive the bounds [11, 90].
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(a) TPC-H.
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(b) SSB.

1.0 2.5 5.0 7.5 10.0
Targeted error (%)

0

100

200

300

400

500

Ac
hi

ev
ed

 e
rro

r (
%

) Achieved=Targeted
PilotDB w/o BSAP

(c) ClickBench.
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(d) Instacart.

Figure 16: TAQA with standard CLT fails to achieves error guarantees on TPC-H, SSB, ClickBench, and Instacart, resulting errors

up to 520% when the targeted error is 10%. We show the maximum, mean, and minimum errors in 20 executions.
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Figure 17: TAQA with standard CLT fails to guarantee errors

for the DSB benchmark.
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Figure 18: Varying selectivity.
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Figure 19: Varying data sizes.

B.2 Proof of Theorem 1

Proof. We first recap the definitions of 𝐿𝜇 ,𝑈𝑉 [Θ], and the CLT-
based confidence interval on 𝜇:

P
[
𝜇 ≥ 𝐿𝜇

]
≥ 1 − 𝛿1

P [𝑉𝑎𝑟 [𝜇] (Θ) ≤ 𝑈𝑉 [Θ]] ≥ 1 − 𝛿2

P
[
𝜇 − 𝑧 (1+𝑝′ )/2

√︁
𝑉𝑎𝑟 [𝜇] ≤ 𝜇 ≤ 𝜇 + 𝑧 (1+𝑝′ )/2

√︁
𝑉𝑎𝑟 [𝜇]

]
≥ 𝑝′

Then, based on Boole’s Inequality, we have

P
[ (
𝜇 ≥ 𝐿𝜇

)
∨ (𝑉𝑎𝑟 [𝜇] (Θ) ≤ 𝑈𝑉 [Θ])

∨
(
|𝜇 − 𝜇 | ≤ 𝑧 (1+𝑝′ )/2

√︁
𝑉𝑎𝑟 [𝜇] (Θ)

) ]
≥ 1 − 𝛿1 − 𝛿2 − (1 − 𝑝′) = 𝑝′ − 𝛿1 − 𝛿2

which implies that

P

[����� 𝜇 − 𝜇

𝜇
≤

𝑧 (1+𝑝′ )/2
√︁
𝑈𝑉 [Θ]

𝐿𝜇

�����
]
≥ 𝑝′ − 𝛿1 − 𝛿2

Therefore, if we let

𝑧 (1+𝑝′ )/2
√︁
𝑈𝑉 [Θ]

𝐿𝜇
≤ 𝑒 and 𝑝′ − 𝛿1 − 𝛿2 = 𝑝

user’s error specification will be satisfied, which is

P

[���� 𝜇 − 𝜇

𝜇
≤ 𝑒

����] ≥ 𝑝 (14)

□

B.3 Proof of the Rules in Table 2

Lemma B.2. (Multiplication) Let 𝜇 be a quantity calculated as

the product of two positive quantities 𝜇1 and 𝜇2 (i.e., 𝜇 = 𝜇1𝜇2). We

estimate 𝜇1 with 𝜇1 and 𝜇2 with 𝜇2. Let 𝑒𝜇1 (< 1) be the relative error
between 𝜇1 and 𝜇1, and 𝑒𝜇2 (< 1) be the relative error between 𝜇2
and 𝜇2. The relative error between 𝜇 and 𝜇1𝜇2 has an upper bound of

𝑒𝜇1 + 𝑒𝜇2 + 𝑒𝜇1 · 𝑒𝜇2 .

Proof. By definition of the relative error and the positiveness
of 𝜇1, we have���� 𝜇1 − 𝜇1

𝜇1

���� ≤ 𝑒𝜇1 ⇔ (1 − 𝑒𝜇1 )𝜇1 ≤ 𝜇1 ≤ (1 + 𝑒𝜇1 )𝜇1

Similarly, we have���� 𝜇2 − 𝜇2
𝜇2

���� ≤ 𝑒𝜇2 ⇔ (1 − 𝑒𝜇2 )𝜇2 ≤ 𝜇2 ≤ (1 + 𝑒𝜇2 )𝜇2

Then, we have

(1 − 𝑒𝜇1 ) (1 − 𝑒𝜇2 )𝜇1𝜇2 ≤ 𝜇1𝜇2 ≤ (1 + 𝑒𝜇1 ) (1 + 𝑒𝜇2 )𝜇1𝜇2
⇔ (𝑒𝜇1𝑒𝜇2 − 𝑒𝜇1 − 𝑒𝜇2 )𝜇1𝜇2 ≤ 𝜇1𝜇2 − 𝜇1𝜇2 (15)

≤ (𝑒𝜇1𝑒𝜇2 + 𝑒𝜇1 + 𝑒𝜇2 )𝜇1𝜇2

⇔
���� 𝜇1𝜇2 − 𝜇1𝜇2

𝜇1𝜇2

���� ≤ 𝑒𝜇1 + 𝑒𝜇2 + 𝑒𝜇1 · 𝑒𝜇2

□

Lemma B.3. (Division) Let 𝜇 be a quantity calculated as the ratio

of two positive quantities 𝜇1 and 𝜇2 (i.e., 𝜇 = 𝜇1/𝜇2). We estimate

the 𝜇1 with 𝜇1 and 𝜇2 with 𝜇2. Let 𝑒𝜇1 (< 1) be the relative error
between 𝜇1 and 𝜇1, and 𝑒𝜇2 (< 1) be the relative error between 𝜇2 and
𝜇2. The relative error between 𝜇 and 𝜇1/𝜇2 has an upper bound of

𝑒𝜇1+𝑒𝜇2
1+min(𝑒𝜇1 ,𝑒𝜇2 )

.
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Proof. By the definition of the relative error and the positive-
ness of 𝜇1 and 𝜇2, we have

1 − 𝑒𝜇1

1 + 𝑒𝜇2

𝜇1
𝜇2

≤ 𝜇1
𝜇2

≤
1 + 𝑒𝜇1

1 − 𝑒𝜇2

𝜇1
𝜇2

⇔ −
𝑒𝜇1 + 𝑒𝜇2

1 + 𝑒𝜇1

𝜇1
𝜇2

≤ 𝜇1
𝜇2

− 𝜇1
𝜇2

≤
𝑒𝜇1 + 𝑒𝜇2

1 + 𝑒𝜇2

𝜇1
𝜇2

⇒
���� 𝜇1/𝜇2 − 𝜇1/𝜇2

𝜇1/𝜇2

���� ≤ 𝑒𝜇1 + 𝑒𝜇2

1 +min(𝑒𝜇1 , 𝑒𝜇2 )

□

Lemma B.4. (Addition) Let 𝜇 be a quantity calculated as the

linear combination of two positive quantities 𝜇1 and 𝜇2. Namely,

𝜇 = 𝜆1𝜇1 + 𝜆2𝜇2, where 𝜆1 and 𝜆2 are positive. We estimate 𝜇1 with
𝜇1 and 𝜇2 with 𝜇2. Let 𝑒𝜇1 (< 1) be the relative error between 𝜇1 and
𝜇1, and 𝑒𝜇2 (< 1) be the relative error between 𝜇2 and 𝜇2. The relative
error between 𝜇 and 𝜆1𝜇1 +𝜆2𝜇2 has an upper bound ofmax(𝑒𝜇1 , 𝑒𝜇2 ).

Proof. By the definition of the relative error and the positive-
ness of 𝜇1 and 𝜇2, we have

(1 − 𝑒𝜇1 )𝜆1𝜇1 + (1 − 𝑒𝜇2 )𝜆2𝜇2 ≤ 𝜆1𝜇1 + 𝜆2𝜇2 (16)
≤ (1 + 𝑒𝜇1 )𝜆1𝜇1 + (1 + 𝑒𝜇2 )𝜆2𝜇2

⇔ −𝜆1𝑒𝜇1𝜇1 − 𝜆2𝑒𝜇2𝜇2 ≤ 𝜆1𝜇1 + 𝜆2𝜇2 − (𝜆1𝜇1 + 𝜆2𝜇2) (17)
≤ 𝜆1𝑒𝜇1𝜇1 + 𝜆2𝑒𝜇2𝜇2

⇒
����𝜆1𝜇1 + 𝜆2𝜇2 − (𝜆1𝜇1 + 𝜆2𝜇2)

𝜆1𝜇1 + 𝜆2𝜇2

���� ≤ max(𝑒𝜇1 , 𝑒𝜇2 )

□

B.4 Proof of Lemma 3.2

Lemma B.5. For a table 𝑇 with block size 𝑏, block sampling with

a sampling rate 𝜃 satisfying the condition below ensures that the

probability of missing a group of size greater than 𝑔 is less than 𝑝 𝑓 .

𝜃 ≥ 1 −
(
1 −

(
1 − 𝑝 𝑓

) ⌈𝑔/𝑏 ⌉/|𝑇 | )1/⌈𝑔/𝑏 ⌉
(18)

Proof. Based on the meta-information, we calculate the number
of blocks in 𝑇 as 𝑁𝑏 = |𝑇 |/𝑏. Because each group has at least 𝑔
rows, each group takes at least 𝑛𝑏 = ⌈𝑔/𝑏⌉ blocks. Suppose there
are 𝑡 groups with size larger than 𝑔. Let 𝑛𝑖 be the number of blocks
taken by the 𝑖-th group. We then have the following constraints

𝑡 ≤ |𝑇 |
𝑛0

(19)

∀1≤𝑖≤𝑡 , 𝑛𝑖 ≥ 𝑛0 (20)

Based on the process of block sampling, we can calculate the prob-
ability of including 𝑖-th group as following

P [include group i] = 1 − P [miss group i] = 1 − (1 − 𝜃 )𝑛𝑖

Next, we calculate the probability of including groups 𝑖 and 𝑗 (𝑖 ≠ 𝑗 ).
Suppose group 𝑖 and group 𝑗 share 𝑘 blocks (𝑘 ≥ 0), then the

probability of including two groups has the following lower bound.

P [(include group i) ∧ (include group j)]
= P [include group i | include group j] · P [include group j]
=

(
P [include group i] · P [not include shared blocks | include group j]
+ P [include shared blocks | include group j]

)
· P [include group j]

=

( (
1 − (1 − 𝜃 )𝑛𝑖

)
·
𝑛 𝑗 − 𝑘

𝑛 𝑗
+ 𝑘

𝑛 𝑗

)
·
(
1 − (1 − 𝜃 )𝑛 𝑗

)
≥

(
1 − (1 − 𝜃 )𝑛𝑖

)
·
(
1 − (1 − 𝜃 )𝑛 𝑗

)
We extend the results to all groups and calculate lower bound of
the probability of including all groups

P [include all groups] ≥
𝑡∏
𝑖=1

(
1 − (1 − 𝜃 )𝑛𝑖

)
Applying the constraints in 19 and 20, we can have the following
lower bound for the probability of including all groups

P [include all groups] ≥
𝑡∏
𝑖=1

(
1 − (1 − 𝜃 )𝑛0

)
≥

|𝑅 |/𝑛0∏
𝑖=1

(
1 − (1 − 𝜃 )𝑛0

)
=

(
1 − (1 − 𝜃 ) ⌈𝑔/𝑏 ⌉

) |𝑇 |/⌈𝑔/𝑏 ⌉

Therefore, if the sampling rate 𝜃 satisfies

𝜃 ≥ 1 −
(
1 − (1 − 𝑝) ⌈𝑔/𝑏 ⌉/|𝑇 |

)1/⌈𝑔/𝑏 ⌉
then

P [miss a group] = 1 − P [include all groups] ≤ 𝑝

□

B.5 Proof of Lemma 4.1

Proof. Let 𝑛𝑏 be the number of blocks in the block sample and
𝑛𝑟 be the number of rows in the row-level uniform sample. Then,
the estimated mean using the block sample is

𝜇𝑏 =
1

𝑏 · 𝑛𝑏

𝑛𝑏 ·𝑏∑︁
𝑖=1

𝑋𝑖

The estimated mean using the row-level uniform smaple is

𝜇𝑢 =
1
𝑛𝑟

𝑛𝑟∑︁
𝑖=1

𝑋𝑖

We find that both estimators are unbiased:

E [𝜇𝑏 ] =
1
𝑛𝑏

𝑛𝑏∑︁
𝑖=1
E


1
𝑏

( 𝑗+1) ·𝑏−1∑︁
𝑖=𝑗 ·𝑏

𝑋𝑖

 =
1
𝑛𝑏

𝑛𝑏∑︁
𝑖=1

1
𝑁𝑏

𝑁 ·𝑏∑︁
𝑖=1

𝑋𝑖 = 𝜇

E [𝜇𝑟 ] =
1
𝑛𝑟

𝑛𝑟∑︁
𝑖=1
E [𝑋𝑖 ] = 𝜇

Therefore, the variance of the estimator is essentially the expected
squared error. To achieve the same accuracy in expectation, we let
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the variance of two estimators be the same. That is,

𝑉𝑎𝑟 [𝜇𝑏 ] = 𝑉𝑎𝑟 [𝜇𝑟 ] =
1
𝑛𝑟

𝑉𝑎𝑟 [𝑋𝑖 ] (21)

Moreover, based on the law of total variance, we can decompose
the variance of 𝜇𝑏 in the following way:

𝑉𝑎𝑟 [𝜇𝑏 ] =
1
𝑛𝑏

𝑉𝑎𝑟


1
𝑏

( 𝑗+1) ·𝑏−1∑︁
𝑖=𝑗 ·𝑏

𝑋𝑖

 =
1
𝑛𝑏

(
𝑉𝑎𝑟 [𝑋𝑖 ] − E

[
𝜎2𝑗

] )
Finally, we can derive the ratio between the sample size of block
sampling and that of row-level uniform sampling to achieve the
same accuracy in expectation as follows:

𝑏 · 𝑛𝑏
𝑛𝑟

= 𝑏
©­­«1 −

E
[
𝜎2
𝑗

]
𝑉𝑎𝑟 [𝑋𝑖 ]

ª®®¬ (22)

□

B.6 Proof of Proposition 4.3

Proof. Let �̃� = {𝑅∗1, . . . , 𝑅
∗
𝑘
} be the set of tables on which the

aggregate function 𝑓 produces 𝑥 . Then, we have

P

[
𝑓

(
S1 ({𝑇1, . . . ,𝑇𝑛})

)
= 𝑥

]
= P

[
𝑘⋃
𝑖=1

S1 ({𝑇1, . . . ,𝑇𝑛}) = 𝑅∗𝑖

]
=

𝑘∑︁
𝑖=1
P

[
S1 ({𝑇1, . . . ,𝑇𝑛}) = 𝑅∗𝑖

]
Similarly, we have

P [𝑓 (S2 ({𝑇1, . . . ,𝑇𝑛})) = 𝑥] =
𝑘∑︁
𝑖=1
P

[
S2 ({𝑇1, . . . ,𝑇𝑛}) = 𝑅∗𝑖

]
Since S1 and S2 are equivalent, we then have

P [𝑓 (S1 ({𝑇1, . . . ,𝑇𝑛})) = 𝑥] = P [𝑓 (S2 ({𝑇1, . . . ,𝑇𝑛})) = 𝑥]
□

B.7 Proof of Propositions 4.4, 4.5, and 4.6

Proposition 4.4 (Selection).

Proof. First, we describe two events whose probability is zero
and independent of the order of block sampling and selection. Sup-
pose the input table𝑇 has 𝑁 blocks: 𝑃1, . . . , 𝑃𝑁 . Let𝑇 ∗ be the result
table of applying block sampling and selection on 𝑇 .

𝐸1 := ∃𝑟 ∈𝑇 ∗ , 𝜙 (𝑟 ) = 0
𝐸2 := ∀𝑖∈[1,𝑁 ] ∃𝑟1,𝑟2∈𝑃𝑖 , 𝜙 (𝑟1) = 𝜙 (𝑟2) = 1 AND 𝑟1 ∈ 𝑇 ∗ AND 𝑟2 ∉ 𝑇 ∗

As long as the selection operation is applied, every row in the result
table must evaluate the predicate 𝜙 to 1. Therefore, the probability
of 𝐸1 is 0. Furthermore, block sampling ensures that if one row is
sampled, the whole block is sampled. Therefore, it is not likely to
have two rows from the same block satisfying the predicate, but
only one of them is in the result table. Namely, the probability of
𝐸2 is 0.

Next, we analyze the probability distributions excluding events
𝐸1 and 𝐸2. Let 𝑇 ′ = {𝑃 ′1, . . . , 𝑃

′
𝑁 ′ } be the subset of 𝑇 satisfying 𝜙 ,

where each block 𝑃 ′
𝑖
contains non-zero rows satisfying 𝜙 . If we

exclude events 𝐸1 and 𝐸2, the result table must be a subset of blocks
in 𝑇 ′, regardless of the order of operations. We can calculate the
inclusion probability of 𝑃 ′

𝑖
in 𝑇 ∗ for different orders of operations.

It turns out that the inclusion probability is independent of the
operation order.

P
[
𝑃 ′𝑖 ∈ 𝜎𝜓 (B𝜃 (𝑇 ))

]
= P [𝑃𝑖 ∈ B𝜃 (𝑇 )] = 𝜃

P
[
𝑃 ′𝑖 ∈ B𝜃 (𝜎𝜓 (𝑇 ))

]
= P

[
𝑃 ′𝑖 ∈ B𝜃 (𝑇 ′)

]
= 𝜃

Since blocks are independent of each other in the process of
selection and block sampling, for the result table𝑇 ∗ = {𝑃 ′1, . . . , 𝑃

′
𝑛},

we have

P
[
𝜎𝜓 (B𝜃 (𝑇 )) = 𝑇 ∗]

= P

[(
𝑛⋂
𝑖=1

𝑃 ′𝑖 ∈ 𝜎𝜓 (B𝜃 (𝑇 ))
) ⋂ (

𝑁 ′⋂
𝑖=𝑛+1

𝑃 ′𝑖 ∉ 𝜎𝜓 (B𝜃 (𝑇 ))
)]

= 𝜃𝑛 (1 − 𝜃 )𝑁
′−𝑛 ;

P
[
B𝜃 (𝜎𝜓 (𝑇 )) = 𝑇 ∗]

= P

[(
𝑛⋂
𝑖=1

𝑃 ′𝑖 ∈ B𝜃 (𝜎𝜓 (𝑇 ))
) ⋂ (

𝑁 ′⋂
𝑖=𝑛+1

𝑃 ′𝑖 ∉ B𝜃 (𝜎𝜓 (𝑇 ))
)]

= 𝜃𝑛 (1 − 𝜃 )𝑁
′−𝑛

Therefore, for any result table, the probability is independent of the
order of selection and block sampling. Namely, selection and block
sampling commutes. □

Proposition 4.5 (Join).

Proof. Since block sampling commutes with selection, it is suf-
ficient to prove that block sampling also commutes with cross-
product. Without loss of generality, we assume block sampling is
executed on 𝑇1. We first describe an event whose probability is
zero and is independent of the order of block sampling and cross-
product. Suppose𝑇1 has 𝑁 blocks:𝑇1 = {𝑃1 . . . . , 𝑃𝑁 }. Let𝑇 ∗ be the
result table after applying block sampling and cross-product over
𝑇1 and 𝑇2.

𝐸 := ∀𝑖∈[1,𝑁 ] ∃𝑟1,𝑟2∈𝑃𝑖 , (𝑟1 Z 𝑇2) ∈ 𝑇 ∗ AND (𝑟2 Z 𝑇2) ∉ 𝑇 ∗

Block sampling ensures that if one row is sampled, the whole block
is sampled. Therefore, it is not likely to have one row in the result
table while other rows from the same block are not. Namely, the
probability of 𝐸 is 0.

Next, we analyze the probability distributions excluding the
event 𝐸. Let 𝑇 ′ = {𝑃 ′1, . . . , 𝑃

′
𝑁
} be the full cross-product where

𝑃 ′
𝑖
= 𝑃𝑖 Z 𝑇2 (i.e., the cross-product of block 𝑃𝑖 and table 𝑇2). If we

exclude event 𝐸, the result table 𝑇 must be a subset of blocks in 𝑇 ′.
We can calculate the inclusion probability of 𝑃 ′

𝑖
in 𝑇 . It turns out

that the inclusion probability is independent of the operation order.

P
[
𝑃 ′𝑖 ∈ (B𝜃 (𝑇1) Z 𝑇2)

]
= P [𝑃𝑖 ∈ B𝜃 (𝑇1)] = 𝜃

P
[
𝑃 ′𝑖 ∈ B𝜃 (𝑇1 Z 𝑇2)

]
= P

[
𝑃 ′𝑖 ∈ B𝜃 (𝑇 ′)

]
= 𝜃

Since blocks are independent of each other in the process of
cross-product and block sampling, for the arbitrary result table
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𝑇 ∗ = {𝑃 ′1, . . . , 𝑃
′
𝑛}, we have

P
[
(B𝜃 (𝑇1) Z 𝑇2) = 𝑇 ∗]

= P

[(
𝑛⋂
𝑖=1

𝑃 ′𝑖 ∈ (B𝜃 (𝑇1) Z 𝑇2)
) ⋂ (

𝑁⋂
𝑖=𝑛+1

𝑃 ′𝑖 ∉ (B𝜃 (𝑇1) Z 𝑇2)
)]

= 𝜃𝑛 (1 − 𝜃 )𝑁−𝑛 ;

P
[
B𝜃 (𝑇1 Z 𝑇2) = 𝑇 ∗]

= P

[(
𝑛⋂
𝑖=1

𝑃 ′𝑖 ∈ B𝜃 (𝑇1 Z 𝑇2)
) ⋂ (

𝑁⋂
𝑖=𝑛+1

𝑃 ′𝑖 ∉ B𝜃 (𝑇1 Z 𝑇2)
)]

= 𝜃𝑛 (1 − 𝜃 )𝑁−𝑛

Therefore, for any result table, the probability is independent
of the order of cross-product and block sampling. Namely, cross-
product and block sampling commute. Since selection and block
sampling commute, join and block sampling commute. □

Proposition 4.6 (Union).

Proof. First, we describe an event whose probability is zero and
independent of the order of union and block sampling. Suppose
𝑇1 has 𝑁1 blocks: 𝑇1 = {𝑃 (1)

1 , . . . , 𝑃
(1)
𝑁1

}, and 𝑇2 has 𝑁2 blocks: 𝑇2 =

{𝑃 (2)
1 , . . . , 𝑃

(2)
𝑁2

}. Let 𝑇 ∗ be the result table after applying block
sampling and union over 𝑇1 and 𝑇2.

𝐸1 := ∀𝑖∈[1,𝑁1 ] ∃𝑟1,𝑟2∈𝑃 (1)
𝑖

, 𝑟1 ∈ 𝑇 ∗ AND 𝑟2 ∉ 𝑇 ∗

𝐸2 := ∀𝑖∈[1,𝑁2 ] ∃𝑟1,𝑟2∈𝑃 (2)
𝑖

, 𝑟1 ∈ 𝑇 ∗ AND 𝑟2 ∉ 𝑇 ∗

Block sampling ensures that if one row is sampled, the whole block
is sampled. Therefore, it is not likely to have one row in the result
table while other rows from the same block are not. Namely, both
the probability of 𝐸1 and the probability of 𝐸2 are zero.

Next, we analyze the probability distribution excluding 𝐸1 and
𝐸2. Let 𝑇 ′ = {𝑃 (1)

1 , . . . , 𝑃
(1)
𝑁1

, 𝑃
(2)
1 , . . . , 𝑃

(2)
𝑁2

} be the union of 𝑇1 and
𝑇2. If we exclude 𝐸1 and 𝐸2, the result table 𝑇 must be a subset of
blocks in 𝑇 ′. We can calculate the inclusion probability of 𝑃 (1)

𝑖
and

𝑃
(2)
𝑖

in 𝑇 . It turns out that the inclusion probability is independent
of the operation order. Without loss of generality, we only show
the calculation of the inclusion probability of 𝑃 (1)

𝑖
.

P
[
𝑃
(1)
𝑖

∈ (B𝜃 (𝑇1) ∪ B𝜃 (𝑇2))
]
= P

[
𝑃
(1)
𝑖

∈ B𝜃 (𝑇1)
]
= 𝜃

P
[
𝑃
(1)
𝑖

∈ B𝜃 (𝑇1 ∪𝑇2)
]
= 𝜃

Since blocks are independent of each other in the process of
union and block sampling, for the arbitrary result table:

𝑇 ∗ = {𝑃 (1)
1 , . . . , 𝑃

(1)
𝑛1 , 𝑃

(2)
1 , . . . , 𝑃

(2)
𝑛2 }

we have

P
[
(B𝜃 (𝑇1) ∪ B𝜃 (𝑇2)) = 𝑇 ∗]

= P

[( 𝑛1⋃
𝑖=1

𝑃
(1)
𝑖

∈ B𝜃 (𝑇1)
) ⋃ (

𝑁1⋃
𝑖=𝑛1+1

𝑃
(1)
𝑖

∉ B𝜃 (𝑇1)
)

⋃ (
𝑛2⋃
𝑖=1

𝑃
(2)
𝑖

∈ B𝜃 (𝑇2)
) ⋃ (

𝑁2⋃
𝑖=𝑛2+1

𝑃
(2)
𝑖

∉ B𝜃 (𝑇2)
)]

= 𝜃𝑛1 · (1 − 𝜃 )𝑁1−𝑛1 · 𝜃𝑛2 · (1 − 𝜃 )𝑁2−𝑛2

= 𝜃𝑛1+𝑛2 · (1 − 𝜃 )𝑁1+𝑁2−𝑛1−𝑛2 ;

P
[
B𝜃 (𝑇1 ∪𝑇2) = 𝑇 ∗]

= P

[( 2⋃
𝑘=1

𝑛𝑘⋃
𝑖=1

𝑃
(𝑘 )
𝑖

∈ B𝜃 (𝑇1 ∪𝑇2)
)

⋃ ( 2⋃
𝑘=1

𝑁𝑘⋃
𝑖=𝑛𝑘+1

𝑃
(𝑘 )
𝑖

∉ B𝜃 (𝑇1 ∪𝑇2)
)]

= 𝜃𝑛1+𝑛2 (1 − 𝜃 )𝑁1−𝑛1+𝑁2−𝑛2

Therefore, for any result table, the probability is independent of
the order of union and block sampling. Namely, union and block
sampling commute. □

B.8 Proof of Theorem 4.7

Proof. We consider the Join of𝑘 block samples as𝑛 independent
and orthogonal blcok sampling procedures on the full cross product.
Then, the final convergence can be proved by induction. We set up
the notations as follows.

Let𝑤𝑡, 𝑗 (𝑖1, . . . , 𝑖𝑡 ) be the sum of Joinwith fixed indices, (𝑖1, . . . , 𝑖𝑡 )
on the first 𝑡 table, a fixed index 𝑗 on the 𝑡 + 1-th table, and all of
the last 𝑘 − 1 − 𝑡 tables. Namely,

𝑤𝑡, 𝑗 (𝑖1, . . . , 𝑖𝑡 ) =
𝑁𝑡+2∑︁
𝑖𝑡+2=1

· · ·
𝑁𝑘∑︁
𝑖𝑘

J (𝑖1, . . . , 𝑖𝑡 , 𝑗, 𝑖𝑡+2, . . . , 𝑖𝑘 ) (23)

Then, let𝑤𝑡 be the vector of of𝑤𝑡, 𝑗 s with all possible 𝑗s:

®𝑤𝑡 (𝑖1, . . . , 𝑖𝑡 ) = (𝑤𝑡,1 (𝑖1, . . . , 𝑖𝑡 ), . . . ,𝑤𝑡,𝑁𝑡+1 (𝑖1, . . . , 𝑖𝑡 ))
⊤ (24)

Suppose we know the sampling results of the first 𝑡 tables, we
denote �̂�𝑡 as the mean of the result:

�̂�
(𝑡 )
𝑛1,...,𝑛𝑡 =

(
𝑡∏
𝑖=1

1
𝑛𝑖

)
𝑛1∑︁
𝑖1=1

· · ·
𝑛𝑡∑︁
𝑖𝑡=1

®𝑤𝑡 (𝑖1, . . . , 𝑖𝑡 )

Let 𝑢𝑡,𝑖 be a one-hot vector of length 𝑁𝑡+1, where the 𝑖-th element
is 1 and the rest of elements are 0:

®𝑢𝑡,𝑖 = (

𝑁𝑡+1︷                ︸︸                ︷
0, . . . , 0︸  ︷︷  ︸

𝑖−1

, 1, 0, . . . , 0)⊤ (25)

Let �̃�𝑡 be the set of 𝑁𝑡+1 𝑢𝑡,𝑖s and𝑈
(𝑡 )
𝑛𝑡+1 be the mean of 𝑛𝑡+1 vectors

randomly sampled from �̃�𝑡 without replacement. Namely,

�̃�𝑡 = {𝑢𝑡,1, . . . , 𝑢𝑡,𝑁𝑡+1 }, 𝑈
(𝑡 )
𝑛𝑡+1 =

1
𝑛𝑡+1

𝑛𝑡+1∑︁
𝑖=1

®𝑢𝑡,𝑖



SIGMOD ’25, June 03–05, 2025, Berlin, Germany Yuxuan Zhu, Tengjun Jin, Stefanos Baziotis, Chengsong Zhang, Charith Mendis, and Daniel Kang

We denote 𝑍𝑛1,...,𝑛𝑡+1 as the inner product of �̂�
(𝑡 )
𝑛1,...,𝑛𝑡 and𝑈

(𝑡 )
𝑛𝑡+1 :

𝑍𝑛1,...,𝑛𝑡+1 =

(
�̂�

(𝑡 )
𝑛1,...,𝑛𝑡

)⊤
𝑈

(𝑡 )
𝑛𝑡+1

Then, we find that the mean of the Join result over block samples
𝜇 can be represented as 𝑍𝑛1,...,𝑛𝑡 with 𝑡 = 𝑘 . Next, we prove the
convergence of 𝑍𝑛1,...,𝑛𝑡 by induction on 𝑡 .

Base case. When 𝑡 = 0, we have

𝑤0, 𝑗 =
𝑁2∑︁
𝑖2=1

· · ·
𝑁𝑘∑︁
𝑖𝑘

J ( 𝑗, 𝑖2, . . . , 𝑖𝑘 ) (26)

𝑍𝑛1 =
1
𝑛1

𝑛1∑︁
𝑖1

𝑁2∑︁
𝑖2=1

· · ·
𝑁𝑘∑︁
𝑖𝑘

J (𝑖1, 𝑖2, . . . , 𝑖𝑘 ) (27)

In this case, the convergence of 𝑍𝑛1 follows the standard CLT.
Namely, with 𝜇 (1) = 1

𝑁1

∑𝑁1
𝑖1

· · ·∑𝑁𝑘

𝑖𝑘
J (𝑖1, . . . , 𝑖𝑘 ), we have

𝑍𝑛1 − 𝜇 (1)
𝐷−→ N(0,𝑉𝑎𝑟

[
𝑍𝑛1

]
)

Induction step. Suppose the convergence of 𝑍1𝑛1,...,𝑛𝑡 holds, i.e.,

𝑍𝑛1,...,𝑛𝑡 − 𝜇 (𝑡 )
𝐷−→ N

(
0,𝑉𝑎𝑟

[
𝑍𝑛1,...,𝑛𝑡

] )
Then, for the case of 𝑡 + 1, we have the following according to
multivariate CLT.

�̂�
(𝑡 )
𝑛1,...,𝑛𝑡 −𝑊

(𝑡 )
𝑛1,...,𝑛𝑡

𝐷−→ N(0, Σ𝑊 )

where Σ𝑊 is the covariance matrix of �̂� (𝑡 )
𝑛1,...,𝑛𝑡 and

𝑊
(𝑡 )
𝑛1,...,𝑛𝑡 =

(
𝑡∏
𝑖=1

1
𝑁𝑖

)
𝑁1∑︁
𝑖1=1

· · ·
𝑁𝑡∑︁
𝑖𝑡=1

®𝑤𝑡 (𝑖1, . . . , 𝑖𝑡 )

According to the standard multivariate CLT, we have

𝑈
(𝑡 )
𝑛𝑡+1 −𝑈

(𝑡 )
𝑛𝑡+1

𝐷−→ N (0, Σ𝑈 ) (28)

where Σ𝑈 is the covariance matrix of𝑈 (𝑡 )
𝑛𝑡+1 and

𝑈
(𝑡 )
𝑛𝑡+1 =

(
1

𝑁𝑡+1
, . . . ,

1
𝑁𝑡+1

)
︸                 ︷︷                 ︸

𝑁𝑡+1

Since the block sampling procedure on table 𝑡 + 1 is indenpendent
of the block sampling procedures on previous 𝑡 tables, we can apply
the Cramer-Wold Theorem, which leads to(

�̂�
(𝑡 )
𝑛1,...,𝑛𝑡 ,𝑈

(𝑡 )
𝑛𝑡+1

)
−

(
𝑊

(𝑡 )
𝑛1,...,𝑛𝑡 ,𝑈

(𝑡 )
𝑛𝑡+1

)
𝐷−→ N (0, (Σ𝑊 , Σ𝑈 ))

We further apply the 𝛿-method, which results in(
�̂�

(𝑡 )
𝑛1,...,𝑛𝑡

)⊤
𝑈

(𝑡 )
𝑛𝑡+1 −

(
𝑊

(𝑡 )
𝑛1,...,𝑛𝑡

)⊤
𝑈

(𝑡 )
𝑛𝑡+1

𝐷−→

N
(
0,

(
𝑊

(𝑡 )
𝑛1,...,𝑛𝑡

)⊤
Σ𝑊𝑊

(𝑡 )
𝑛1,...,𝑛𝑡 + (𝑈 (𝑡 )

𝑛𝑡+1 )
⊤Σ𝑈𝑈

(𝑡 )
𝑛𝑡+1

)
Namely,

𝑍𝑛1,...,𝑛𝑡+1 − 𝜇 (𝑡+1)
𝐷−→ N

(
0,𝑉𝑎𝑟

[
𝑍𝑛1,...,𝑛𝑡+1

] )
□

B.9 Generalized Version of Lemma 4.8 and Its

Proof

Lemma B.6. Without loss of generality, we suppose 𝑇1 is sampled

with sampling rate 𝜃𝑝 in the pilot query. Then, the standard estimator

of the SUM aggregate obtained from a query with a sampling plan

Θ = [𝜃1, . . . , 𝜃𝑘 ] has a variance of at most

𝑈𝑉 [Θ] =
∑︁

𝑆⊆{1,...,𝑘 } |1∈𝑆
𝑐𝑆 ·𝑈

𝑦
(1)
𝑆,𝑖

[𝛿]

+
∑︁

𝑆⊆{2,...,𝑘 } |𝑆≠∅
𝑐𝑆 ·

∑︁
𝑡 ∈Λ(𝑆 )

(
𝑈
𝑦
(2)
𝑡,𝑆,𝑖

[𝛿]
)2

with a probability of at least 1 − 𝛿 , where

𝑐𝑆 =
∑︁
𝑆 ′⊆𝑆

(−1) |𝑆 |+|𝑆
′ |

𝑘∏
𝑖=1

𝜃
−1(𝑖∉𝑆 ′ )
𝑖

,

𝑦
(1)
𝑆,𝑖

=
∑︁

𝑡 𝑗,𝑞𝑗 ∈𝑇𝑗 | 𝑗∈𝑆,𝑗≠1

©­­«
∑︁

𝑡 𝑗,𝑞𝑗 ∈𝑇𝑗 | 𝑗∈𝑆𝐶
J (𝑡1,𝑖 , . . . , 𝑡𝑘,𝑞𝑘 )

ª®®¬
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,

𝑦
(2)
𝑡,𝑆,𝑖

=
∑︁

𝑡 ′∈Λ(𝑆𝐶 )
J (𝑡1,𝑖 , 𝑡, 𝑡 ′),

𝑆𝐶 = {1, . . . , 𝑘}/𝑆,
Λ({1, . . . , 𝑘′}) = {𝑡 |𝑡 ∈ 𝑇1} × . . . × {𝑡 |𝑡 ∈ 𝑇𝑘 ′ }

𝑈𝑦𝑖 [𝛿] =
1
𝜃𝑝

( 𝑛𝑝∑︁
𝑖=1

𝑦𝑖 +
√
𝑛𝑝 · �̂� (𝑦𝑖 ) · 𝑡𝛿,𝑛𝑝−1

)
𝛿 ′ = 𝛿

/(
2𝑘−1 + 2

𝑘∏
𝑖=2

𝑁𝑖

)
Proof. We first calculate the variance exactly.

𝑉𝑎𝑟


(

𝑘∏
𝑖=1

1
𝜃𝑖

) ∑︁
𝑡1∈𝑇1

· · ·
∑︁

𝑡𝑘 ∈𝑇𝑘

J (𝑡1, . . . , 𝑡𝑘 )
 (29)

=
∑︁

𝑆⊆{1,...,𝑘 }
𝑐𝑆

∑︁
𝑡 𝑗,𝑞𝑗 ∈𝑇𝑗 | 𝑗∈𝑆

©­­«
∑︁

𝑡 𝑗,𝑞𝑗 ∈𝑇𝑗 | 𝑗∈𝑆𝐶
J (𝑡1,𝑖 , . . . , 𝑡𝑘,𝑞𝑘 )
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(30)

where 𝑇𝑖 is the block sample of 𝑇𝑖 with sampling rate 𝜃𝑖 and

𝑐𝑆 =
∑︁
𝑆 ′⊆𝑆

(−1) |𝑆 |+|𝑆
′ |

𝑘∏
𝑖=1

𝜃
−1(𝑖∉𝑆 ′ )
𝑖

We observe that Equation 30 requires execute the full query,
which is prohebitively expensive. Therefore, we use the pilot query
which samples the table 𝑇1 with sampling rate 𝜃𝑝 to estimate the
upper bound of the variance. Based on the exact expression of the
variance, we need to estimate the upper bound of the following
item for each 𝑆 , the subset of {1, . . . , 𝑘}.

𝑌𝑆 =
∑︁

𝑡 𝑗,𝑞𝑗 ∈𝑇𝑗 | 𝑗∈𝑆

©­­«
∑︁

𝑡 𝑗,𝑞𝑗 ∈𝑇𝑗 | 𝑗∈𝑆𝐶
J (𝑡1,𝑖 , . . . , 𝑡𝑘,𝑞𝑘 )
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(31)

Depending on whether the sampling table 𝑇1 is in 𝑆 , we consider
the following two cases.
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Case 1: 1 ∈ 𝑆 . In this case, we denote

𝑦
(1)
𝑆,𝑖

=
∑︁

𝑡 𝑗,𝑞𝑗 ∈𝑇𝑗 | 𝑗∈𝑆,𝑗≠1

©­­«
∑︁

𝑡 𝑗,𝑞𝑗 ∈𝑇𝑗 | 𝑗∈𝑆𝐶
J (𝑡1,𝑖 , . . . , 𝑡𝑘,𝑞𝑘 )
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We find that 𝑌𝑆 in Equation 31 is a sum of 𝑦 (1)
𝑆,𝑖

. We can obtain the
upper bound of the sum of random variables with the sum of its
sample and statistics from Student’s t distribution. Namely,

P

[
𝑌𝑆 ≤ 1

𝜃𝑝

( 𝑛𝑝∑︁
𝑖=1

𝑦
(1)
𝑆,𝑖

+ √
𝑛𝑝 · �̂� (𝑦 (1)

𝑆,𝑖
) · 𝑡1−𝛿,𝑛𝑝−1

)]
≥ 1 − 𝛿

where 𝜃𝑝 is the sampling rate, 𝑛𝑝 is the size of resulting sample,
�̂� (𝑦 (1)

𝑆,𝑖
) is the standard deviation of the sample, and 𝑡1−𝛿,𝑛𝑝−1 is the

1 − 𝛿 percentile of the Student’s t distribution with 𝑛𝑝 − 1 degrees
of freedom.

Case 2: 1 ∉ 𝑆 . In this case, we denote

𝑦
(2)
𝑡,𝑆,𝑖

=
∑︁

𝑡 ′∈Λ(𝑆𝐶 )
J (𝑡1,𝑖 , 𝑡, 𝑡 ′)

Then we can express 𝑌𝑆 equivalently as

𝑌𝑆 =
∑︁

𝑡 ∈Λ(𝑆 )

(
𝑁1∑︁
𝑖=1

𝑦
(2)
𝑡,𝑆,𝑖

)2
which intuitively is summation of squared summation of 𝑦 (2) .
Therefore, we can obtain the upper bound of 𝑌𝑆 by obtaining the
upper bound of each

∑𝑁1
𝑖=1 𝑦

(2)
𝑡,𝑆,𝑖

, using the same technique in the
Case 1. Namely,

P

[
𝑁1∑︁
𝑖=1

𝑦
(2)
𝑡,𝑆,𝑖

≤ 1
𝜃𝑝

( 𝑛𝑝∑︁
𝑖=1

𝑦
(2)
𝑡,𝑆,𝑖

+ √
𝑛𝑝 · �̂� (𝑦 (2)

𝑡,𝑆,𝑖
) · 𝑡1−𝛿,𝑛𝑝−1

)]
≥ 1 − 𝛿

Combining two cases and dividing the overall failure probability
by the number of individual upper bounds we used in the derivation,
we can obtain the final result. □

B.10 Comparing Equivalence Rules with

Dominance Rules

We first review the definition of sampling dominance [58].

Definition B.7. Given the same original query, the sampling pro-
cedure S1 with output 𝑅1 dominates the sampling procedure S2

with output 𝑅2, or S1
𝑄
==⇒ S2, if and only if,

(𝑣 − 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒) ∀𝑖, 𝑗 :
P [𝑖 ∈ 𝑅1, 𝑗 ∈ 𝑅1]
P [𝑖 ∈ 𝑅1] P [ 𝑗 ∈ 𝑅1]

≥ P [𝑖 ∈ 𝑅2, 𝑗 ∈ 𝑅2]
P [𝑖 ∈ 𝑅2] P [ 𝑗 ∈ 𝑅2]

, 𝑎𝑛𝑑

(𝑐 − 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒) P [𝑡 ∈ 𝑅1] ≤ P [𝑡 ∈ 𝑅2]

We then prove that our equivalence rules are stronger than the
sampling dominance rules of QuickR.

Theorem B.8. Given the same origianl query with 𝑘 input tables

{𝑇1, . . . ,𝑇𝑘 }, if S1 ⇔ S2, then S1
𝑄
==⇒ S2 and S1

𝑄
==⇒ S2.

Proof. Let 𝑅1 be the output of S1 and 𝑅2 be the output of S2.
Then, we observe that

P [𝑖 ∈ 𝑅1] =
∑︁

𝑅∈{𝑅′ :𝑖∈𝑅′ }
P [S1 ({𝑇1, . . . ,𝑇𝑘 }) = 𝑅]

P [𝑖 ∈ 𝑅2] =
∑︁

𝑅∈{𝑅′ :𝑖∈𝑅′ }
P [S2 ({𝑇1, . . . ,𝑇𝑘 }) = 𝑅]

According to the definition of S1 ⇔ S2,

∀𝑅, P [S1 ({𝑇1, . . . ,𝑇𝑘 }) = 𝑅] = P [S2 ({𝑇1, . . . ,𝑇𝑘 }) = 𝑅] .
Thus,

P [𝑖 ∈ 𝑅1] = P [𝑖 ∈ 𝑅2] (32)
which proves the mutual c-dominance between S1 and S1.

Similarly, we can show that

P [𝑖 ∈ 𝑅1, 𝑗 ∈ 𝑅1] =
∑︁

𝑅∈{𝑅′ :𝑖∈𝑅′, 𝑗∈𝑅′ }
P [S1 ({𝑇1, . . . ,𝑇𝑘 }) = 𝑅]

P [𝑖 ∈ 𝑅2, 𝑗 ∈ 𝑅2] =
∑︁

𝑅∈{𝑅′ :𝑖∈𝑅′, 𝑗∈𝑅′ }
P [S2 ({𝑇1, . . . ,𝑇𝑘 }) = 𝑅]

Since S1 ⇔ S2, we have

P [𝑖 ∈ 𝑅1, 𝑗 ∈ 𝑅2] = P [𝑖 ∈ 𝑅2, 𝑗 ∈ 𝑅2] (33)

Equation 32 and 33 together prove themutual v-dominance between

S1 and S1. Hence, S1
𝑄
==⇒ S2 and S1

𝑄
==⇒ S2. □

As shown, the sampling dominance rules of QuickR only con-
siders the inclusion probability of one or two sampling units, which
does not prove the equivalence. The equivalence property enables
BSAP to not only maintain error guarantees but also avoid unneces-
sary increasing of sampling rates.

C Supported Database Management Systems

Existing databases support sampling at the page level, shard level, or
row level. PilotDB can accelerate queries for those supporting page-
level sampling. These databases include PostgreSQL, SQL Server,
and Oracle. However, page-level sampling can be implemented
in other databases, such as Snowflake and BigQuery easily. We
categorize databases as follows:
(1) Databases that support page-level sampling: PostgreSQL, SQL

Server, Oracle, Apache Hive, DB2, DuckDB
(2) Databases that only support shard-level sampling: Snowflake,

BigQuery
(3) Databases that only support row-level sampling: SparkSQL,

MongoDB
(4) Databases that do not support sampling: MySQL
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