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Abstract—With the growth of data scale in the mobile edge
computing (MEC) network, data security of the MEC network
has become a burning concern. The application of blockchain
technology in MEC enhances data security and privacy pro-
tection. However, throughput becomes the bottleneck of the
blockchain-enabled MEC system. Hence, this paper proposes
a novel hierarchical and partitioned blockchain framework to
improve scalability while guaranteeing the security of partitions.
Next, we model the joint optimization of throughput and
security as a Markov decision process (MDP). After that, we
adopt deep reinforcement learning (DRL) based algorithms to
obtain the number of partitions, the size of micro blocks and
the large block generation interval. Finally, we analyze the
security and throughput performance of proposed schemes.
Simulation results demonstrate that proposed schemes can
improve throughput while ensuring the security of partitions.

I. INTRODUCTION

The growth of intelligent devices promotes the rise of
mobile services, especially in computing offloading and
content caching. Mobile edge computing (MEC) can speed
up the processing speed of computing tasks by offloading
computing tasks to distributed edge nodes or MEC servers.
It also brings the challenges of privacy disclosure and data
security [1] [2] [3] [4]. As a promising technology, the
integration of blockchain and mobile edge computing can
provide users with secure and reliable business services [5]
[6]. For example, the distributed ledger of blockchain can
record content caching, spectrum allocation and comput-
ing resource allocation, providing a reliable platform for
multi-party transactions [7]. In addition, the smart contract
mechanism of blockchain can be used as a middle-ware
to connect heterogeneous networks and provide automated
mobile services for users [8] [9]. Nevertheless, in the face
of the growing number of devices and transaction size,
low throughput becomes the bottleneck of the integration
of blockchain and mobile edge computing [10] [11] [12].
Therefore, increasing attention has been paid to the research
of high-throughput blockchain system.
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NSFC (No.61932014, 61972246), China (No.2018YFB0105203), Research
Collaboration Grant from NII, Japan, and Zhejiang Lab’s International Talent
Fund for Young Professionals. Jie Li is the corresponding author.

On the one hand, some works focus on improving the
scalability on and off the chain. The ways of capacity
expansion on the chain include optimizing block size, block
interval and partition mechanism. Xu et al., [13] propose
an efficient cross-slice protocol to improve the efficiency
of parallel processing. In order to extend the blockchain
system linearly, Wang et al., [14] introduce an asynchronous
consensus mechanism to avoid the overhead of multi-stage
commit protocol. There are two ways to expand capacity
under the chain: side chain technology and state channel
based mechanism. The former allows Bitcoin transactions
to be processed on multiple side chains, which makes the
throughput of the blockchain system increase geometrically
[15]. Sivaraman et al., [16] propose a state channel routing
scheme based on multi-path transport protocol to achieve
high throughput and traffic balance in the payment channel
network (PCN).

On the other hand, the quantitative analysis of blockchain
has been under the spotlight. Chen et al., [17] adopt a graph
analysis to describe user’s activities on Ethereum, including
transfer of property, smart contract call and generation. Xiao
et al., [18] propose an analytical model to evaluate the impact
of blockchain network connectivity on consensus security.
To obtain the appropriate block size and block frequency,
Liu et al., [19] model the consensus process as Markov
decision process (MDP), and then employ a deep Q-network
(DQN) based algorithm to obtain the optimization strategy
to improve the throughput. In [20], block size and resource
allocation of the MEC system are formulated as a joint
optimization problem to satisfy the time-varying channel
environment.

Nevertheless, the above works mainly emphasize the de-
sign of the high throughput blockchain system and quanti-
tative analysis of throughput. In the MEC system enabled
by blockchain, the optimization of throughput and partition
security of the blockchain is separated, which leads to a
sub-optimal performance. Therefore, we propose a novel
blockchain sharding framework based on partition and hier-
archical consensus, which quantifies the security of partition
and maximizes the transaction throughput under the con-
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straint of a given security threshold. Additionally, to adapt to
the time -varying and dynamic communication network, we
adopt deep reinforcement learning (DRL) based algorithms
(double-dueling Deep Q-network [21] [22], Asynchronous
Advantage Actor-Critic [23] and Deep Deterministic Policy
Gradient [24]) to obtain the optimization strategy of the
partition number, block size and block generation interval.
The main works of this paper are summarized as follows:
• We propose a blockchain sharding framework based

on hierarchical and partition consensus to improve the
throughput of blockchain system.

• We conduct a joint quantitative analysis on the through-
put of blockchain and the security of partition mecha-
nism.

• We adopt DRL-based algorithms to obtain the number
of partitions, large block generation interval and the size
of micro blocks.

• We compare the performance of the proposed scheme
with typical schemes in terms of throughput and secu-
rity. Simulation results show that our scheme outper-
forms typical schemes.

The rest of this paper is organized as follows. The system
model is given in Section II. Section III describes the
metric of performance analysis. In Section IV, the problem
formulation is present. Next, experiments and analysis are
shown in Section V. Finally, the conclusion is discussed in
Section VI.

II. SYSTEM MODEL

In this section, the system framework is introduced, and
the consensus model is described.

A. System scenarios and system framework

The sharding framework of the MEC-oriented blockchain
system is shown in Fig. 1. The small base stations (SBSs)
equipped with the MEC server not only provide mobile
services for users in the cell, but also act as the node of
the blockchain system due to their abundant computational
resources. To improve the efficiency of the verification and
consensus process, we layer and partition the blockchain
system. Specifically, it is divided into K preliminary con-
sensus groups (PG) and a final consensus group (FG),
which is equipped with the trusted execution environment
(TEE). PGk, k ∈ K accomplish the preliminary transaction
consensus, package verified transactions into a micro block,
and then send it to FG. After FG receiving micro blocks
from PGs, they package micro blocks into a large block,
and then complete the final consensus.

B. Consensus Model

Since practical Byzantine fault tolerant (PBFT) has good
security in asynchronous network, it is adopted as the consen-
sus algorithm in this paper. According to [25], the consensus
process includes five stages: request, pre-prepare, prepare,
commit and reply. Specifically, the client node issues a large
block, other nodes audit and compare it with each other, and

finally reply the auditted results and signatures to the client
node.

III. METRICS OF PERFORMANCE ANALYSIS

A. Security of Sharding

Security refers to the ability of blockchain system to resist
Byzantine node tampering with the consensus mechanism,
which is an important feature to evaluate the performance
of the blockchain system. In this paper, consensus algorithm
is PBFT, whose adversary model is n ≥ 3f + 1, where n
represents the number of all consensus nodes, f represents
the number of malicious nodes. In other words, the proportion
of malicious nodes in the network does not exceed 1/3.
Additionally, for a partitioned blockchain systems, security
is also relevant to the number of partitions. Therefore, we
can quantify the security of partition and the global security
of blockchain system.

1) The security of partition: We divide PG into K groups,
each group contains n nodes. We assume that the malicious
probability of each node is p0. We denote the discrete variable
X as the number of malicious nodes in partition PGk.
According to [26], the security probability of PGk can be
quantified as Ps(K)

Ps(K) = 1− Pr [X ≥ n/3] = 1−
n∑

m=n/3

Pr[X = m]

= 1−
n∑

m=n/3

(
n

m

)
pn−m0 (1− p0)m,

(1)

where n = bN/Kc. By observing (1), we find that partition
security is a monotonic decreasing function of K.

2) The global security: After that, we consider the par-
tition as a large node of blockchain system. Hence, the
global security probability of the proposed blockchain system
Pg(K) can be quantified according to partition security
probability Ps(K)

Pg(K) = 1−
K∑

m=bK/3c

(
K

m

)
Ps(K)K−m(1− Ps(K))m.

(2)
Next, we guarantee the security of the proposed blockchain
system by imposing security constraints on the blockchain
system Pg(K) ≥ 1− 2−λ, where λ is the safety parameter.

B. Confirmation Time of Transactions

According to the system model in II-A, transactions are
first verified by PGk, k ∈ K to complete the preliminary
consensus, then packaged into micro blocks and sent to FG,
and finally packaged into large blocks by FG to complete
the final consensus.
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Fig. 1. The framework of the hierarchical and partitioned blockchain system.

1) The processing time of PG: The consensus time in-
cludes packing time, consensus time, and delivery time.
• Packing time: The packing time of PGk can be calcu-

lated as

t
(1)
pakk

=
SMν

ck
, (3)

where SM denotes the size of micro block, ν is the
computational resource required to process micro block
per unit size, ck represents the computational resource
allocated to PGk.

• Consensus time: The consensus time of PGk can be
calculated as [19]

t
(1)
PBFTk

=


min{ S

M

Rc,p
}+ min{max

i6=c,p

SM

Rp,i
}+

min{ max
i6=j;i,j 6=c

SM

Ri,j
}+

min{max
i6=j

SM

Ri,j
}+ min{max

i6=c

SM

Ri,c
}


,

(4)
where Ri,j denotes the transmission rate of consensus
nodes in PGk.

• Delivery time: The delivery time of PGk can be given
as

t
(1)
delk

=
SM

RPGk,FG
, (5)

where RPGk,FG denotes the transmission rate between
PGk and FG. Hence, the total transaction processing
time of PG can be represented as

T (1) = max{t(1)pakk + t
(1)
PBFTk

+ t
(1)
delk
}. (6)

2) The processing time of FG: The total transaction
processing time of FG includes the block generation time
and the final consensus time.
• Block generation time : FG packeges micro blocks

received from PG into large blocks. The generation time
of the large block is denoted as TG.

• Final consensus time : The final consensus time t(2)PBFT
can be approximated as [19]

t
(2)
PBFT =


min{KS

M

Rc,p
}+ min{max

i6=c,p

KSM

Rp,i
}+

min{ max
i6=j;i,j 6=c

KSM

Ri,j
}+

min{max
i6=j

KSM

Ri,j
}+ min{max

i6=c

KSM

Ri,c
}


,

(7)

where Ri,j represents the transmission rate of consensus
nodes in FG. Hence, the total transaction processing time
of FG can be given as

T (2) = TG + t
(2)
PBFT . (8)

C. Throughput Analysis

Throughput refers to the number of transactions processed
by the blockchain system per second. It can be calculated as

Φ(K,SM , TG) =
KSM

TG
, (9)

where K represents the number of partitions, TG is the large
block generation time and SM denotes the micro block size.

IV. PROBLEM FORMULATION

In this Section, partition security, block generation interval
and micro block size are formulated as a joint optimization
problem to simultaneously improve the throughput and secu-
rity of the blockchain system. Next, three deep reinforcement
learning (DRL) based algorithms are adopted to solve the
non-convex optimization problem.

A. State Space

We define the state space of the blockchain system as
S = {s(t), t ∈ T }, where s(t) is the state of blockchain
system at time period t, which contains the transmission rate
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Algorithm 1 DDPG based algorithm
1: Initialize actor network µ and critic network Q with

random parameters θµ and θQ.
2: Initialize target networks Q’ and µ′ with θQ

′ ← θQ,
θµ

′ ← θµ.
3: Initialize replay buffer R.
4: for each episode ∈ [1, episode max] do
5: Obtain a random noise N for action exploration.
6: Receive initial observation state s1.
7: for each epoch t ∈ [1, epoch max] do
8: Select action by at = µ(st|θµ) +Nt and act.
9: Observe reward rt and new state st+1.

10: Store transition (st, at, rt, st+1) into R.
11: Sample a random minibatch R′ from R.
12: for each transition ∈ R′ do
13: yi = ri + γQ′(si+1, µ

′(si+1|θµ
′
)|θQ′

)
14: Update critic by minimizing the loss:

L = 1
N

∑
i(yi −Q(si, ai|θQ))2

15: Update policy with sampled policy gradient:
∆θµJ =

1
N

∑
i ∆aQ(si, ai|θQ)∆θµµ(si|θµ)

16: Update the target networks:
θQ

′ ← τθQ + (1− τ)θQ
′
,

θµ
′ ← τθµ + (1− τ)θµ

′

17: end for
18: end for
19: end for

of the wireless link R = rn,m, n 6= m,n,m ∈ N , the com-
putational capability of blockchain nodes C = cn, n ∈ N .
Therefore, s(t) can be described as

s(t) = [R, C](t). (10)

B. Action Space

To maximize the throughput and partition security of the
blockchain system, the number of partitions, block generation
interval and micro-block size need to be adjusted at every
time period t. Therefore, action space is defined as A =
{a(t), t ∈ T }, where a(t) can be represented as

a(t) = [K,SM , TG](t). (11)

C. Reward Function

In this paper, our goal is to maximize both partition
security and throughput. Therefore, the reward function is
defined as follows

P1 : max
K,SM ,TG

R(K,SM , TG)

s.t. C1 : 0 ≤ KSM ≤ Ṡ,
C2 : T (1) + T (2) ≤ µ TG,
C3 : Ps(K) ≥ 1− 2−λ,

(12)

where C1 guarantees that the size of micro block does not ex-
ceed the upper limit of size, C2 ensures the confirmation time

TABLE I
SIMULATION PARAMETERS

Symbol Definition
the malicious probability of nodes in PG p0
the total number of nodes in PGs N
the number of PG K
the set of PG K
the size of the micro block SM

the large block generation time TG

the security probability of PG Ps(K)
the global security probability Pg(K)

is bounded within the generation time of a certain number
of blocks, and C3 ensures the security of each blockchain
partition. Additionally, the reward function R(K,SM , TG)
represents the long term reward, which can be calculated as

R(SM ,K, TG) =
T∑
t=t′

ηt
′−tr(t), (13)

where η represents the discount rate, and r(t) denotes the
immediate return, which is defined as the weight of global
security and throughput of the blockchain system

r(t) =

{
θΦ(K,SM , TG) + (1− θ)Pg(K), C1− C3 hold,
0, otherwise,

where θ is the weight coefficient, θ ∈ [0, 1].
Next, we adopt algorithms based on double-dueling Deep

Q-Network (DQN), Asynchronous Advantage Actor-Critic
(A3C) and Deep Deterministic Policy Gradient (DDPG) [22]
[23] [24] to solve (10). In the application of DDPG, the action
space and state space are continuous. We give the algorithm
of DDPG in Algorithm 1.

D. Complexity analysis

To figure the complexity of proposed schemes, we first
analyze the size of state space. There are M and L different
discrete states for R and C of the state space S = [R, C].
Hence, the state space size is MP × LP = (ML)P , where
P is the number of total nodes.

Next, we consider the cases of different algorithms. In
double-dueling DQN, it only uses one network. The action
can be expressed as a function of the states. Therefore, the
complexity is O(S) = O((ML)P ).

V. EXPERIMENTS AND ANALYSIS

In this section, the proposed partitioned blockchain scaling
framework is evaluated. In the simulation, the GPU version is
GK210GL Tesla K80. The software environment is Pytorch
v1.8.1 with Python v3.7/ TensorFlow v1.14.0 with Python
v2.6 on Ubuntu 16.04.6. Other important parameters are
listed in Table II.

Fig. 2 shows the convergence performance of the proposed
scheme. Specifically, double-dueling DQN, A3C and DDPG
converge after 300 episodes, 400 episodes and 500 episodes,
respectively, which proves that the three schemes proposed
have good convergence performance.
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TABLE II
SIMULATION PARAMETERS

parameters value
Learning rate(DDDQN) 0.01
Learning rate(A3C) 10−4

Learning rate(DDPG) 10−4, 10−3

Replay buffer size(DDDQN) 500
Replay buffer size(DDPG) 105

Minibatch size(DDDQN) 32
Minibatch size(DDPG) 64
Hidden layer sizes(DDDQN) 100
Hidden layer sizes(A3C) 128, 128
Hidden layer sizes(DDPG) 128, 64
Discount factor(DDDQN, A3C) 0.9
Discount factor(DDPG) 0.99
Update iteration(A3C) 0.001
Soft target update rate(DDPG) 0.001
Maximum Episode 1000
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Fig. 2. Convergence of the proposed scheme.
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Fig. 3. The large block generation interval vs long term-reward.

Fig. 3 analyzes the impact of the generation interval TG on
the long-term reward. As can be seen from Fig. 3, the long-
term reward decreases with the increase of TG. The reason
is that a larger TG means a longer block generation and
a smaller throughput of the blockchain system. In addition,
compared with A3C and double-dueling DQN, the DDPG-
based scheme has the best performance for the reason that it
can select actions in action space accurately.

To evaluate the throughput performance of the proposed
scheme, we compare the throughput with that of our scheme
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Double-dueling DQN without partitions

Fig. 4. Performance of throughput under different schemes.
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Fig. 5. The number of partitions vs Global security probability under
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Fig. 6. The number of partitions vs Global security probability under
different malicious probability.

and typical schemes. It can be seen from Fig. 4 that the pro-
posed scheme is superior to the other three typical schemes
due to the proposed scheme dynamically selects the number
of partitions, the size of micro blocks and the generation
interval of large blocks, and achieve the optimal throughput
under the model constraint.

Fig. 5 investigates the number of partitions on the global
security probability of blockchain system under different ma-
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licious probabilities. We can observe that when the malicious
probability is 0.2 and the number of partitions is less than
7, the proposed partition scheme has high security. Besides,
with the increase of malicious probability, global security
probability is reduced, as the number of nodes needed to
achieve correct consensus is limited.

Fig. 6 studies the impact of the number of partitions on the
global security of blockchain system under different number
of SBSs. From Fig. 6, we can see that global security displays
a fluctuation with a period of 3. Besides, global security
doesn’t decrease with the increase of the number of partitions
for there are down rounding and the terms of bn/3c in (1)
and (2). Therefore, the relationship between the number of
partitions and the global security probability of blockchain
system is not a monotonic function.

VI. CONCLUSION

In this work, we propose a novel partitioned blockchain
framework. To improve the throughput of blockchain system,
we design the consensus mechanism of layering and parti-
tioning. Next, we jointly optimize the security and throughput
of blockchain system to obtain the optimal number of par-
titions, micro block size and block generation interval. The
proposed scheme is based on deep reinforcement learning
(DRL) algorithm, which can perform adaptive partitioning for
different malicious probabilities p0 to ensure global security.
Finally, we adopt three algorithms based on deep rein-
forcement learning to cope with the optimization problem.
Simulation results show that: 1) the proposed scheme has a
good convergence performance; 2) the proposed scheme can
improve the throughput of the blockchain system and ensure
the global security of the blockchain system.
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